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Abstract

This paper investigates the causal effect of school-starting-age on educational outcomes
in math and reading, using Pisa data. Specifically, we investigate three countries that
are known to start primary education late (Latvia, Finland and Korea). Through
regression discontinuity design, we find a significantly negative effect of starting late
on educational outcomes, even though the consensus finding in the literature is that
older children perform better. We argue that this is caused by the already high average
age at which children start school in the investigated countries. We decompose the
treatment effect to show that the negative effect of starting later is primarily driven
by boys, especially boys from lower socio-economic backgrounds.
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1 Introduction

Education is beneficial to not only the individual but also to society as a whole. Therefore, it is
crucial for countries to determine how they design their education system optimally. One of the
key factors in this policy design is determining the starting rule, which specifies when children start
to go to school.

Despite the importance of the school-starting-age (SSA), there is very strong variation in it, even
within Europe. Some countries like the United Kingdom opt to start very early around age 5, hoping
that teaching children early will have positive long-term outcomes. Proponents of a low starting
age argue that teaching students earlier will be especially beneficial for those with a lower socio-
economic status. This policy is not without controversy however, as multiple pedagogical experts
have stressed the importance of enough play for children Whitebread (2013). Other countries like
Finland start much later, at age 7, exactly to allow children more play. Still, the question remains
whether starting even later and allowing for more play could benefit students.

These differences between countries not only cause debates in the public domain, but also in the
academic literature. To determine the effect of SSA on educational outcomes, much of the literature
makes use of the fact that in grades some students are (almost) a year older than other students.
For example, in Denmark students start school in the year in which they turn 6. This means that
children born December 31 start a full year earlier with school than children born January 1, despite
being born only one day apart. It is then possible to compare the oldest and youngest children in
a grade: they have received the same level of education, but just started at a different age.

Many studies have compared these groups and a widely replicated finding in the literature is that
these older children generally perform better at school than their younger peers Valdés (2023)
Zhang et al. (2017). Not only do they perform better, they also have less behavioral issues and are
diagnosed with learning disabilities less often Balestra et al. (2020). Even though the differences
are clear at a young age, how much of the effect remains when students are older is unclear. Bahrs
and Schumann (2020) find that in Germany students that start older with school smoke less and
live healthier lifestyle, also in adulthood. On the other hand, some papers do not find an effect
on the final degree of education attained Black et al. (2011) Oosterbeek et al. (2021). Both those
papers also find that students who start school younger end up earning more on the labor market,
as they likely enter the labor market sooner and therefore have more experience.

Using this cut-off point, where being born one day later or earlier can affect the school starting
year by a full year, much of the literature considers either regression discontinuity design (RDD) or
instrumental variable (IV). RDD considers students born just around the cut-off date and assumes
groups of students before or after the cut-off date are essentially the same. This then means that
whether students start relatively early or late is essentially designed randomly, as parents cannot
control the birth of their child to the day. Hence, this allows for causal inference. IV is similar and
also uses this cut-off point. It then assumes that school entry rules are exogenous and SSA can be
used as an instrument to predict educational outcomes.

When investigating the effect of SSA on educational outcomes, many papers consider one specific
region. For example, they make use of changes in the cut-off date in specific jurisdiction to employ
RDD Peña (2017), Cook and Kang (2020), who consider Tlaxcala, Mexico and North Carolina,
USA respectively. Other papers use country-specific datasets to draw conclusions Oosterbeek et al.
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(2021). Still, cross-country analysis is performed less often, as comparison can be complicated by
differing datasets.

Luckily, the OECD has collected data on educational performance in several countries since 2000
using standardised tests, known as the Program for International Student Assessment (PISA). This
allows for comparisons between countries. It not only tests students performance in the subjects
math, reading and science, but also asks them about their background, including questions about
when they started school and their parents’ socio-economic background.

Using this dataset, this paper first looks for countries that have clear starting rules and similar.
This means looking for countries where we find clear cut-off points: for example everyone born in
September starts with school early and all October births start late. This is essential to ensure
that RDD is possible. Considering the modal starting age for every birth month, we identify
three different countries that have the same starting rule in December/January and have similar
average starting ages: Korea, Latvia and Finland. The set of countries is heterogeneous in terms
of culture and student characteristics, but quite homogeneous in terms of policy, allowing us to
clearly distinguish the effect of a one-year difference in SSA and reading and math aptitude.

For these countries, we find on average that starting school later decreases educational performance.
At first glance, this seems contradictory with the existing literature, as consensus there is that
older children (that have started later) perform better. However, the countries we consider have
relatively high starting ages, indicating that starting school later only has a positive effect on
younger students.

Next, we explore the mechanisms through which SSA affects educational performance by investigating
heterogeneity. To this end, we perform subgroup analysis and investigate non-linear interaction
effects for performance on reading tests. We find that the positive effect starting earlier has on
educational performance is primarily driven by boys, especially those whose parents have received
relatively little education and whose parents income is relatively low. We hypothesize that parents
from a lower socio-economic background are less able to provide their children with a suitable
education in the absence of formal schooling than higher educated and wealthier parents.

Section 2 deals with the data, provides descriptive statistic and explains our method of finding
the countries with clear starting rules. Then Section 3 discuss our methodology, first to estimate
country-specific effect and then to obtain global treatment effects. Section 4 gives our results and
then Section 5 rounds off this paper by providing the conclusion and discussion.

2 Data

2.1 Data transformations

As PISA surveys take a sample, observation must be reweighed to ensure the sample is representative
of the entire population. To this end, PISA provides weights for every observation, ωijt for
observation i in country j and wave t as follows. We obtain standardised weights ω̃ijt by dividing
by the sum of weights for that country and wave, as given below

ω̃ijt =
ωijt∑n
i=1 ωijt

. (1)
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Next, PISA provides its reading and math scores in 10 plausible values, since not every student
receives the same exact questions. We handle this by taking the average of these 10 plausible values
for every student.

Furthermore, we delete observations that contain missing data for one of the following variables:

• Start age of school (ST126Q01TA)

• Birth month and year (ST003D02T, ST003D03T )

• plausible scores (PV1MATH to PV10MATH, PV1READ to PV10READ).

In total, these criteria leads to us delete about 8.5% of observations from out dataset. This leaves
us with more than enough observations, but the percentage greatly differs between countries. For
example, Norway does not have any data on the birth month and year of students in 2022 and no
data on the birth month in 2018, so we disregard the entire 2018 and 2022 surveys for Norway.

One of the crucial variables in our research is the age at which students started school in a country.
However, some students started schooling in another country. This can be derived from information
about when students arrived in the country where they are currently enrolled in education. For
simplicity, we delete all observation corresponding to students that arrived in the country of testing
after they were born. Lastly, there are some outliers in this variable, as some students report having
started at age 3 or younger or at age 9 or later. Here we simply state that these students started
at exactly age 3 or exactly age 9 respectively.

Lastly, PISA tests students in three different subjects: reading, math and science. As reading and
math are the most fundamental skills, we do not consider science scores.

2.2 Descriptive Statistics

In this section we present descriptive statistics for a set of selected countries. We present the
data for the countries we will use in out later analysis, which are Latvia, Finland and Korea (our
selection procedure will be explained later). Furthermore, we will show the data for several other
countries located in diverse regions to highlight the variation between countries and over the years.

Our first graphs plots the average math and reading score against the variation in those scores.
For every country we take the average score over all students across the years, meaning every
observation is counted equally years with fewer observation are not assigned larger weights. We
consider every student’s math and reading scores, denoted by ysijt, where s denotes the subject,
meaning s ∈ {reading,math} and then multiply these values with their standardised weights ω̃ijt.
We then take the average over all these scores for every country j and wave t and finally rescale
by multiplying by the sum of the weights before standardisation to obtain the average weighted
math/reading score µs

jt

µs
jt =

(
1

n

n∑
i=1

ω̃ijt × ysijt

) n∑
i=1

ωijt. (2)
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We want to compare the average weighted score to the average weighted variation. We consider
the average of the weighted sum of squared differences and then take the square root to obtain the
standard deviation. Again, we do this per country and per wave

σs
jt =

√√√√ n∑
i=1

ω̃ijt × (ysijt − µs
jt)

2. (3)

Figure 6 shows that there is strong variation between countries for both values. For the weighted
average score, Singapore and Korea score the highest, while developing countries such as Indonesia
perform considerably worse. Unsuprisingly, higher income countries such as Korea and Finland
have higher scores in both reading and math than lower income countries such as Indonesia and
Brazil. There is also strong variation in the standard deviation where countries with higher scores
generally have more variation in test scores.

Figure 1: Average and Variance of Performance in Reading and Math

Since we consider the relation between the SSA and academic performance, it is also important to
gauge the starting age across countries because the difference between starting at age 5 instead of
6 might not be the same as starting at age 6 instead of 7. Figure 2 shows that starting ages differ
as much as 1.2 years across the ten countries we selected, indicating that there are considerable
differences in policy (and perhaps policy compliance) across the countries in the sample. Overall,
the heterogeneity in performance and policy between countries indicates it might be prudent to
avoid pooling them to model the relation between students’ characteristics and performance.
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Figure 2: Average SSA across Countries.

There is also variance in how test scores have developed over time. We consider three years in
which PISA scores where measured: 2015, 2018 and 2022. Countries generally perform consistently
in both math and reading across, but for some countries there are some significant exceptions. For
example, the Netherlands scored 503 in reading in 2015 and 459 in 2022. Scores generally increased
between 2015 and 2018 and decreased from 2018 to 2022, likely caused by school closures due to
the COVID pandemic, although the drop in scores differs considerably between countries. Overall
the differences across time within countries are not very large, so we chose to pool country results
across waves.

Figure 3: Average Performance in Reading and Math Over Time

Test performance also varies with other student characteristics. Figure 4 displays that girls outperform
boys in reading on average but boys do better in math, though differences are not very large. The
large differences between the 10th and 90th (denoted by the black and red dotted lines respectively)
are indicative of large discrepancies between the best and worst students. Furthermore, there is
slightly lower variance in performance for girls than for boys in both reading and math.
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Figure 4: Gender and Average Performance in Reading and Math. The black dots represent the 10th
percentile, the blue dots the 50th percentile, and the red arrows denote the 90th percentile of scores per
country. The black, blue and red dotted lines denote the average 10th, 50th, and 90th percentile across
countries in a plot.

Next, we consider class differences between students to study intergenerational mobility. We first
consider the education level of the students’ parents, proxied by the highest number of years that
either parent has completed. The relation between the average reading and math scores and parents’
level of education is clearly positive, as shown in Figure 5. The relation appears particularly strong
for countries where students perform relatively well. The relations are not completely stable,
with large spikes at times, though this might be due to underrepresentation of parents in certain
categories. For example, the amount of parents in Finland that have completed 3 years of education
or less is low. The bottom part of Figure 5 shows the the relation between home possessions, such
as a desk, a quiet place to study, and books is very clearly positively related to student performance.
Students in a higher decile for the variable, i.e., those that have more home possessions, perform
better in both math and reading, with a monotonic and quite smooth relation.

Overall, the dependence between performance and student characteristics such as gender and
parents’ education implies it might be interesting to incorporate them in the models as interaction
terms or covariates.
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Figure 5: Intergenerational Mobility and Average Performance in Reading and Math. PAREDINT indicates
the years of education received by the most educated parent. HOMEPOS indicates the income decile using
home posessions as proxy

2.3 Correlation between SSA and educational outcomes

In this section we explore the correlation between the age at which students enter school and their
math and reading scores. We did this by considering the average SSA per country and per year of
testing. We performed weighted least squares (WLS) according to the standardised sample weights,
as explained in section 2.1. In WLS, you attempt to minimize the following error.

n∑
i=1

(ω̃ijt(yi − (α+ βµSSA
it )))2. (4)

Here, ysi denotes the score of student i in either math or reading, µSSA
jt the average SSA in country

j and time of testing t , α denotes the intercept and β is the WLS coefficient.

The results for the regressions for both math and reading scores are shown in table 1. The coefficient
for average starting age shows that starting a year later on average with schooling corresponds to
a decrease of -22.37 and 38.33 in the math and reading scores respectively. Both coefficients are
highly significant. This corresponds to a decrease in standard deviation of 0.4 and 0.71 for math
and reading respectively.
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Still, this number just gives an indication of the degree of correlation and says nothing about
causation, as in this regression we do not control for student-characteristics of country fixed effects.

Table 1: Weighted least squares regression results

Depedent Variable
Variable Average math score Average reading score

Intercept
579.17***
(1.03)

683.08***
(1.08)

Average starting age
-22.37***
(0.17)

-38.33***
(0.17)

Observations 1631566 1631566

***:p<0.001, standard errors indicated in brackets

2.4 Country Selection

Facilitating a good causal inference exercise requires careful consideration of the circumstances.
The compared groups must exhibit substantial differences in the treatment of interest but should
be very similar in all other relevant characteristics. Since we focus on the effects of SSA on academic
performance, it is essential to select countries with clearly defined school starting rules that can
serve as the cutoff for our analysis. We select this point empirically by identifying a point where
SSA significantly differs between students born before and after a certain date or policy change. It
is also preferable for this policy to be consistent across the three analyzed PISA measurement waves
to ensure the robustness and reliability of the results. Furthermore, determining the correct cutoff
point is important for the validity of the regression discontinuity design. Such a cutoff ensures
that units on both sides of the cutoff are comparable, minimizing the risk of confounding variables
influencing the estimated treatment effects.

To select countries that meet these criteria, we group the data per country and measurement wave,
and analyse the SSA for each month. We calculate the mode of SSA in each month, and select
countries which have two unique modes over the course of the year, as there is potential for a clear
cut-off when such a shift occurs. We drop all observations that have a SSA different from these
two modes because we are interested in the difference starting school a single year earlier makes.
Subsequently, we calculate the share of students that belongs to the higher of the two modes (old
students), and choose countries for which there is a clear increase in this share. The month of this
clear increase logically serves as the cut-off.

It is probably helpful to provide an example to illustrate the selection procedure. Panel a in Figure
6 presents the share of students with a SSA of 6 and 7 per birth month in Finland for the PISA
measurement wave of 2022 (students with a SSA below 6 or above 7 are excluded from the analysis).
The share of students with a SSA of 7 increases substantially between December and January, is
stable between January and July, and decreases steadily between August and December. The PISA
measurement waves of 2015 and 2018 in Finland contain very similar patterns as those observed
in Figure 6. Accordingly, we judge Finland as a valid candidate for our analysis and identify
December/January as the school starting rule.

Figure 6 also shows there is a significant increase in the share of students with a later SSA from
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December to January for Latvia and South-Korea. Importantly, Finland, Latvia, and South-Korea
all have a relatively high average SSA (see Figure 2) with modes of 6 and 7 across the months. The
countries also have the same cut-off point in December/January. By selecting Finland, Latvia, and
South-Korea, we obtain a group of countries that is fairly heterogeneous in terms of culture and
student characteristics, but quite homogeneous in terms of policy.
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(a) Share of students with a SSA of 6 and 7 per birth month in Finland

(b) Share of students with a SSA of 6 and 7 per birth month in Latvia

(c) Share of students with a SSA of 6 and 7 per birth month in Korea

Figure 6: The figure presents the relative share of students with a SSA of 6 and 7 for Finland, Latvia, and
South-Korea. Students with a SSA below 6 or above 7 are excluded from the analysis.
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3 Methodology

In this section, we will first focus on procedures to estimate country-specific effects of educational
policies. In the end, we discuss a method for pooling the results and obtaining global treatment
effects and corresponding assumptions.

3.1 Regression discontuinity (RD)

For the methodology, we will mostly focus on regression discontinuity (RD) design. This is currently
one of the most popular research designs in multiple domains of science for doing causal inference
and program evaluation in the case where a randomly assigned treatment is not available (Imbens
and Lemieux, 2008; Cattaneo and Titiunik, 2022). In such designs, there is a particular cutoff rule
for the treatment and under few assumptions, we can still identify the treatment effect. This is
specifically relevant for this study as we expect that we students who have been born just before a
particular date and just after are comparable in other unobserved characteristics. We will discuss
several frameworks and extensions of the RD design in this section.

In general, RD designs involve three key elements: a score (also known as a running variable, index,
or forcing variable), a cutoff, and a treatment rule. Every unit in the data is assigned a score. The
treatment rule then uses a known cut-off point on the score to decide if a unit receives treatment or
not. This setup creates a sharp change in the likelihood of receiving treatment right at the cutoff.
Under the condition that units cannot influence their own score and do not differ in any unobserved
characteristics, we can compare the outcomes of units just before the threshold and just after.

3.2 Sharp regression discontinuity design (SRD)

We will now elaborate on the most standard RD design which is the case where the cuttoff rule
is a deterministic function of the score, that is, the cutoff rule is “sharp”. In this paper, the
cutoff rule (i.e. the school-starting-age) is based on the month of birth. We now introduce some
notation to model this. Let Yij denote the test outcomes of student i in country j (either maths or
reading). Next, let Xij denote the month of birth that individual (i.e. the running variable). Now
employing the SRD framework, we assume that the treatment variable is a deterministic function
of the running variable. That is, we take the treatment variable to be

Tij = I{Xij ≥ cj}.

Note that we allow cj to differ per country as different countries have different starting months.
Now formulating our framework in terms of the Rubin Causal Model (RCM) (Rubin, 1974), let
Yi(0) and Yi(1) denote the pair of potential outcomes for unit i, where Yi(0) is the outcome without
the treatment and Yi(1) is the outcome with the treatment. The main issue in causal inference is
that we never observe both of these. We assume that the observed outcome is equal to one of these
based on the treatment, so we write

Yij = (1− Tij)Yij(0) + TijYij(1).
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The goal is now to identify and subsequently estimate the average causal effect of the treatment at
the cutoff point for country j

τSRD,j = E(Yij(1)− Yij(0)|Xij = cj).

To do this, we will need identifying assumptions which we will discuss in the following subsection.

There is one important issue that we need to investigate first when applying the SRD framework.
This is whether the cutoff rule is in practice a deterministic function of the month of birth. It could
be that there are many units in the dataset that not follow this rule which could invalidate this
approach. For this paper, this means that many children go to school too early or too late. In the
literature, we then talk about a low “compliance” rate (Angrist and Imbens, 1995). However, it is
known that most countries have high-compliance (Givord, 2020). Moreover, we specifically based
our decision of countries in Section 2.4 based on a clear cutoff rule. Therefore, the SRD framework
seems reasonable to employ for this study.

3.2.1 Identification restrictions

There are two common frameworks for analysis and interpretation of RD designs with corresponding
identifying assumptions. These are known as the continuity framework and the local randomization
framework. For now, we will focus on the continuity framework as this is the most standard and
we elaborate on the assumptions belonging to this framework. We discuss the local randomization
approach in Section 3.4.

Assumption C1 (Continuity of conditional regression functions)

E(Yij(0)|Xij = x) and E(Yij(1)|Xij = x)

are both continuous functions of x.

Assumption C2 (Continuity of conditional distribution functions)

FYij(0)|Xij
(y|x) and FYij(1)|Xij

(y|x)

are continuous functions in x for all y.

These assumptions are based on the idea that units just below and just above the cutoff c would
have similar average outcomes if their treatment status were the same. Therefore, any observed
difference in average outcomes between the treated and control groups at the cutoff is due to the
treatment. This difference can be seen as the causal average effect of the treatment for units with
a score of Xij = cj . Under these assumptions we can write

τSRD,j = E(Yij(1)− Yij(0)|Xij = cj) = lim
x↓cj

E(Yij |Xij = cj)− lim
x↑cj

E(Yij |Xij = cj). (5)

This result now establishes that the SRD can be identified by the vertical distance between the
conditional expectations just to the left limx↑cj E(Yij |Xij = cj) and just to the right which is
limx↓cj E(Yij |Xij = cj). This gap can estimated from the data by estimating two regression models
and then taking the difference of the intercepts at the cutoff value.

12



The above assumptions also immediately showcase when RD designs could fail. One such case is
where the potential outcomes are not continuous functions of the running variable. We have a
discrete running variable (month of birth) so this assumption is violated per definition (Kolesár
and Rothe, 2018). In pratice, this might be a minor problem when the number of mass points
is large and therefore approximates a continuous variable well. In our case, we have only 12
months so this seems problematic. For now, we ignore this problem but discuss a more appropriate
approach in Section 3.4. Another possible violation of the above assumptions happens when units
could strategically adjust their scores to qualify for their preferred treatment condition (Lee, 2008;
McCrary, 2008). This behavior could create a sharp shift in both their observable and unobservable
characteristics around the cutoff point, e.g., parents who illegaly alter the birth certificate of their
children to make them go to school at more favorable time points. As also mentioned by Peña
(2017), “The manipulation of student age—through redshirting, grade retention or selection into
gestational seasons—could bias Ordinary Least Squares estimates of the effect of relative age.” In
such case (5) does not hold anymore and we cannot even identify the SRD.

3.2.2 Estimation

Estimating the SRD treatment effect involves estimating two regressions functions which is a
standard nonparametric regression problem (Härdle, 1990). Nonetheless, there are two nonstandard
features in this problem. The first is that we are only interested in the vlue of the regression function
at a specific point. Additionaly, this point is a boundary point. These two issues make standard
nonparametric kernel regression less effective. At boundary points, such estimators demonstrate a
slower convergence rate compared to their performance at interior points. The standard approach
to deal with this in the literature is by using local linear regression (Fan and Gijbels, 1996).
This technique approximates the regression functions on both sides of the cutoff using weighted
polynomial regressions, typically first or second order. The weights are calculated using a kernel
function based on how close on how close each running variable is to the cutoff. Mathematically,
this would mean that if we want to fit a polynomial of order p, using kernel K and bandwith h,
the SRD can be found by fitting two weighted least-squares regression. If we want country-specific
estimates, this boils down to the following two regressions

β̂−j = arg min
b0,...,bp

n∑
i=1

1(Xij < c)
(
Yij − b0 − b1(Xij − c)− b2(Xij − c)2 − · · · − bp(Xij − c)p

)2
K

(
Xij − c

b

)

β̂+j = arg min
b0,...,bp

n∑
i=1

1(Xij ≥ cj)
(
Yij − b0 − b1(Xij − c)− b2(Xij − c)2 − · · · − bp(Xij − c)p

)2
K

(
Xij − c

b

)
,

where β̂−j = (β̂−j,0, β̂−j,1, . . . , β̂−j,p)
′ and β̂+j = (β̂+j,0, β̂+j,1, . . . , β̂+j,p)

′ denote the least-squares
estimates for the group to the left of the threshold and to the right of the threshold, respectively.
The SRD treatment effect of country j, τSRD,j is calculated as the estimated vertical distance at
the cutoff specifically, which is the difference in intercepts:

τ̂SRD,j(h) = β̂+j,0 − β̂−j,0,

where we assume the data is normalized so that cj = 0 for all countries. Under typical assumptions,
τ̂SRD,j(h) gives a consistent estimate of τSRD,j = E[Yij(1) − Yij(0)|Xij = cj ]. It is standard to use
τSRD,j(hMSE), where hMSE is taken to be the bandwidth that minimizes the mean squared error
(MSE). This provides an estimator that is not only consistent but also MSE-optimal.
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3.2.3 Inference

Although it is common to use bandwidht that minimize the MSE in the literature, one should
be cautious when performing subsequent inference. When selecting the bandwidth based on
minmization of the MSE, we are balancing the squared-bias and variance of the corresponding
RD estimator. However, these often result in ”large” bandwidth choices which to significant
bias in the approximations. Consequently, the confidence intervals derived from such estimators
for RD treatment effects might be unreliable, leading substantial undercoverage. This suggests
that conventional confidence intervals might frequently incorrectly reject the null hypothesis of
no treatment effect. To overcome this limitation, Calonico et al. (2014) propose new confidence
intervals for RD treatment effects that are robust against the bias introduced by “large” bandwidths,
such as those minimizing MSE. These improved intervals aim to provide more reliable and accurate
inference in RD studies. The resulting intervals will have the following from

Irobust =

(
τSRD,j(hMSE)− B̂j ± 1.96

√
V̂j + Ŵj

)
where B̂j is the estimated bias correction, V̂j is the estimated variance and Ŵj denotes the
adjustment made in standard errors for country j. For the exact form of these estimators, we
refer to original paper. Next to the standard non-robust confidence intervals, we also examine
these robust confidence intervals for inference.

3.3 Fuzzy regression discontinuity design

In SRD, we treatment variable is a deterministic function of the running variable. However, in
practice, this is often not the case and treatment assigned does not align with the treatment
received. In this paper, this would either mean that units go to school before the threshold condition
is satisfied or units would not go to school while the threshold condition is satisfied. One could
think of many cases where this would be the case. Mathematically, this would mean that

lim
x↓c

P(Tij = 1|Xij = x)− lim
x↑c

P(Tij = 1|Xij = x) ̸= 1,

that is, the jump in probability of being treated around the threshold is not equal to 1.

To accommodate for this, the fuzzy regression discontinuity (FRD) design has been developed.
Under Assumptions 1 and 2 and an extra monotonicity condition that is similar to one in LATE
framework by Angrist and Imbens (1995) one can then identify the FRD. However, to estimate this,
one needs to know both whether someone was assigned treatment and whether someone complied to
treatment. For our application, treatment assignment refers to being born in specific month, which
we know in the dataset. However, in the dataset, there is no information on whether someone in
fact complied to treatment, i.e. one went to school when one was supposed to. A naive approach
would be to use the grade variable to check whether someone is in the right class and thereby a
possible complier. However, it is possible that students start school too late but skip a class and
thus end up in a class with students who complied and did not skip a class. In the same way, one
could think about students starting too early and repeating a class. As we do not have information
on treatment compliance, we do not consider FRD in this study.
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3.4 Local randomization approach

In the continuity framework that was discussed before, we assumed that the running variable is a
continuous random variable. Theoretically, the moment of birth can be regarded as such a variable.
However, in our dataset, we only observe the month of birth. This means that our running variable
is discrete and therefore the assumptions required assumptions in the continuity framework are
violated. A more appropriate alternative for dealing with such a discrete running variable is to
use local randomization (Cattaneo et al., 2015). This approach refines the model by treating it
similarly to a randomized experiment around the cutoff. Specifically, it assumes that units within
a small range around the cutoff are comparable. This mimics the idea of a random assignment to
a treatment or a control group. Using this method, we only focus on units whose scores are within
this narrow window around the cutoff. One important difference with the continuity approach is
that we now assume that the value of the running variable is unrelated to the potential outcomes.
For this study, we choose the smallest window possible which is a month before and a month after
the threshold.

3.4.1 Identification restrictions

Let us properly outline the required assumptions for this framework. Firstly, let us denote Wj =
[cj − ω, cj + ω] as the window of interest around the cutoff, where we set ω = 1 for our study,
meaning that we look at a window of two months. The assumptions we need are.

Assumption L1 (Unconfoundedness and known treatment)
The distribution of the running variable Xij is unconfounded and distribution of the treatment
assignment is known within W.

Assumption L2 (Constant outcomes within group)
The potential outcomes are not influenced by the running variable within W.

Under assumptions L1 and L2, for all students where Xij falls within the window W, whether they
are placed above or below the cutoff is independent of their potential outcomes. Additionally, these
potential outcomes do not depend on the running variable. As a result, the regression functions
within this interval W remain constant and we can therefore estimate them simply by taking
an average. Note that these assumptions might fail under the same scenario discussed for the
continuity framework where the running variable is confounded. Moreover, we now have the extra
assumption of constant potential outcomes within W. This means students that we assume that
students who have been born in this two month window do not differ in unobserved characteristics.
This assumption is perhaps not entirely realistic, but as two months is still relatively short, we
think it is a reasonable assumption.

3.4.2 Estimation and inference

In our paper, the treatment assignment mechanism is taken to be Bernoulli, i.e. we assume equal
probabilities of being born one month before or one month after the threshold. This means we
use the standard difference-in-means estimator to estimate the effect. Let θSRD,j denote the SRD
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effect using local randomization for country j. Then we run the following regression

Yij = TijθSRD,j + w′
ijδj + ϵij

for all units in windowW and where wij denote other possible regressors, δj denotes other regression
parameters for country j and ϵij denotes an error term. We use standard least-squares methods to
obtain estimates and corresponding standard errors.

3.5 Conditional average treatment effect (CATE)

To detect possible heterogeneity among subgroups in our sample, we add interactions terms. These
interactions terms allow us to investigate the conditional average treatment effect (CATE) for
different characteristics. Investigating CATE is crucial because it allows us to understand how the
impact of the treatment varies across different segments of the population. This differentiation can
help in tailoring interventions more effectively and can provide deeper insights into the mechanisms
behind the treatment effects.

We find the CATE by extending on the local randomization framework that was employed earlier.
Let zij be a particular regressor of interest on which we want to condition for the treatment effect.
We consider the following regression

Yij = TijθSRD,j + Tijzijβj + w′
ijδj + ϵij ,

where βj denotes the coefficient corresponding to the interaction term. Under the assumptions
outlined above and assuming no other regressors wij , we obtain the CATE using

E(Yi(1)− Yi(0)|zij = z) = θSRD,j + zβj .

Therefore, we can estimate it by estimating θSRD,j and βj using standard least-squares regression
techniques.

3.6 Machine learning methods for mechanism detection

Our dataset contains a multitude of variables and a large number observations. One could think
about many possible mechanisms driving the test scores of the students. It is likely that there
are also many interacting effects between these variables and that these exhibit nonlinear patterns.
An extremely popular and natural approach to capture such effects is by exploiting the power
of machine learning models. Unlike traditional models that need clear rules about relationships,
machine learning can find interactions and non-linear relationships as it allows for a highly flexible
model specification. This allows it to reveal important but hidden patterns that simpler models
might miss, making it invaluable for analyzing large and complex datasets like the PISA dataset.

For the purpose of this study, we will mainly focus on the eXtreme Gradient Boosting (XGBoost)
model. This is a popular machine learning algorithm known for its efficiency and effectiveness
in building predictive models, having been the winning model in many data science competitions
(Chen and Guestrin, 2016). It is constructed by a sequence of decision trees, each one correcting
errors made by the previous, through a technique called gradient boosting. Next to that, it
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also incorporates regularization—techniques that help reduce overfitting (making the model too
complex) to improve its performance on unseen data. It is also highly scalable and capable of
handling large datasets and different datatypes, making it suitable for our problem.

Using XGBoost, we try to predict math and reading scores as accurately as possible. For the
explanatory variables, we use the treatment variable and several other variables in our dataset such
as home possession, gender, age, parental education and a few others. We then train the model
parameters by employing cross-validation, which makes sure we avoid cross-fitting and the results
generalize to other data. Finally, by adjusting parameters such as tree depth and learning rate, we
fine-tune the model to achieve the best possible accuracy. As this model is able to capture complex
interactions effects, we would like to have an idea about which interactions are driving these results
and their corresponding strengths. It is known that machine learning models are harder to interpret
than classical econometric methods, but a common way to assess these is by using Shapley values
(Sundararajan and Najmi, 2020). In particular, this method decomposes a prediction into the sum
of effects of each feature being introduced into the regression model.

3.7 Pooled average treatment effect (PATE)

For the last part of the methodology, we discuss how we deal with global / pooled treatment effects.
The methods discussed above could just as well be applied to a pooled dataset and we only wrote
it in terms of country-specific effects for generality. Furthermore, note that for all countries in
our study, the cutoff date is from December to January and kids go to school either aged 6 or
7. This means that there can be no heterogeneity in terms of having the cutoff on a different
moment or children being a different age. We now aim to estimate the pooled average treatment
effect (PATE) of going to school one year later based on students who have been born just before
New Year and just after and therefore start school at either age 6 or 7. However, the number of
observations per country in our dataset is not the same. This could lead to inbalances when pooling
the data. To guard against this, we reweight the data based on the number of observations per
country. Therefore, we use another level of sampling weights on top of the weights from Section
2.1. This allows us to pool the data and use any of the methodology described above and interpret
the effect as an average over three countries. When the effects are the same over all countries, i.e.
it is homogeneous, this should lead to a more efficient estimate. This would be one of the reasons
to also estimate a pooled model. Next to that, in case of heterogeneity across countries, it is of
interest to see what the average effect is and especially how different effects add up or cancel each
other.

4 Results

In this section, we first look at the causal effects of staring school later using the treatment effect
estimators discussed above. Furthermore, we consider the CATE while conditioning on different
explanatory variables. We select these explanatory variables using Shapley values resulting from
the XGBoost model.
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4.1 Causal effect of starting school later

Firstly, we are interested in the direction and strength of the effect of being born after the cut-
off point. To study this, we first employ the estimation procedure for the SRD design under the
standard continuity framework. One useful aspect about these estimates is that they can easily be
displayed graphically by plotting both estimated regression functions to the left and right of the
cutoff. Using first-order polynomials (that is p = 1), we have estimated these for all three countries
separately in our dataset and also for the pooled dataset (with corresponding sampling weights).
These results can be found in Figure 7 where the reading scores are in the left column of the plot
and the maths scores in the right column.
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Figure 7: SRD design treatment effects for Reading and Math (left and right column, respectively)
in Finland, Korea, Latvia (first three rows), and the three countries pooled together (last row).

We first consider only the country-specific effects which can be found in the first three rows of the
figure. The first thing to notice is that all effects are negative. Students who have been born in
January just after the threshold, start school one year later than their peers who have been born in
December. These students who start school later also perform worse on both reading and writing
when 15 years old. This demonstrates that, in these countries, starting school earlier is beneficial
for later school outcomes. This might seem in contrast to Oosterbeek et al. (2021) who finds that
older students do better in terms of academic performance. The difference is that they compare
these students within a classroom where the age varies over students. In this study, we compare
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students of the same age and find that students who started school later (and are therefore generally
older than their peers) perform worse. Another difference is that they look at a country with a
lower cut-off point, the Netherlands.

Moreover, although all effects have the same sign in all three countries, there is clearly some
heterogeneity among them. Overall, the effects seem the weakest for Latvia, slightly stronger for
Finland and the largest for Korea. Since the cut-off is at the same time and age for these countries,
the difference is likely to be in the countries’ characteristics. Next to this, we have also shown the
PATE in the last row of Figure 7. As expected, the pooled effect is of the same sign and magnitude
as the individual countries.

The difference in treatment effects across these countries already highlights the heterogeneity
in treatment effects. In the next section, we attempt to leverage this heterogeneity to better
understand what drives the observed causal effect.

4.2 Underlying mechanisms

To study the underlying mechanisms, we decompose the treatment effect on reading. We first look
at subgroups within the regression discontinuity design. For this, we run a local linear regression.
Then, we look at possible non-linearities in these mechanisms through XGBoost by estimating
interaction effect between the treatment and other regressors. We will subsequently use these to
estimate the CATE which lends itself for policy recommendations. It is important to note that
these conditional expectations do not provide evidence for a causal mechanism beyond the RDD
from the previous section. We merely use these different variables to form hypothesis on possible
causes and suggest further investigation into these.

The results from the subgroup analysis are presented in 2. We investigate the subgroup of gender,
and highly educated parents (≥ 12 years). These can be seen as conditional average treatment
effects, conditional on the subgroups. Model (2) shows that there is a big different in treatment
effects between boys and girls. Boys tend to suffer from starting late, whereas girls do not. Model
(3) shows that children with less educated parents suffer most from starting late. These insights
are combined in Model (4) where we see that it is mostly boys from less educated families that
suffer most from starting late within these countries.

A possible explanation for this finding is that people with higher educated parents have more
learning opportunities at home. This combined with the hypothesized ’maturity gap’ between young
boys and girls might explain why this group suffers much. We further investigate heterogeneity by
going beyond subgroups and looking at non-linear interactions.
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Table 2: Subgroup analysis local linear regression

Dependent variable:
Model 1 Model 2 Model 3 Model 4

(1) (2) (3) (4)

Treatment -11.64∗∗∗ -28.58∗∗∗ -37.10∗∗∗ -52.63∗∗∗

(2.54) (3.26) (3.54) (4.03)

Treatment: Woman 29.47∗∗∗ 28.23∗∗∗

(3.59) (3.56)

Treatment: High Educ Parent 38.19∗∗∗ 37.15∗∗∗

(3.76) (3.73)

Intercept 540.27∗∗∗ 540.27∗∗∗ 540.27∗∗∗ 540.27∗∗∗

(1.80) (1.78) (1.78) (1.77)

Observations 4,797 4,797 4,797 4,797
R2 0.004 0.02 0.03 0.04
Adjusted R2 0.004 0.02 0.02 0.04

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The Shapley values that correspond to the interaction terms in the XGBoost model can be found
in Figure 8 where they have been ordered in strength from left to right. Here, we firstly note that
the strongest interaction effect comes from the home possession variable. This demonstrates that
effect of starting school later is different for children coming from a wealthy background compared
to children from poorer backgrounds. Next to that, we also observe a strong interaction between
the treatment and gender, which shows that starting school later is also different for boys and girls.

Figure 8: Shapley values corresponding to interactions between the treatment effect and other
regressors ordered by absolute value from left to right.

5 Discussion and recommendations

In this paper, we investigated the causal effect of going to school later on subsequent educational
outcomes. In particular, we used the PISA dataset which consists of test outcomes for several
subjects for 15 year old students.
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We find on average that starting school earlier increases educational performance in Finland, Latvia
and South-Korea. This seems contradictory with the existing literature, which suggests that older
children (who start school later) tend to perform better, but our analysis focuses on countries with
relatively high starting ages, implying that the relation is not equal for children of younger and
older ages. We also analyse the mechanisms underlying the impact of school-starting-age (SSA) on
educational performance with subgroup analyses and by examining non-linear interaction effects.
Our findings indicate that the beneficial effect of starting school earlier on educational performance
mainly concerns boys, particularly those from families with lower levels of parental education and
income. We hypothesize that parents from a lower socio-economic background are less able to
provide their children with a suitable education in the absence of formal schooling than higher
educated and wealthier parents.

On the basis of the results we recommend caution for countries considering to raise their SSA if their
SSA is already relatively high, i.e., around or above 6 years of age, as it may be bad for students.
The fact that a high starting ages particularly disadvantages children with a lower socio-economic
background is concerning for equity reasons.

One important issue with RD designs is that they have limited external validity. This is because
it only provides estimates for a subpopulation, that is, the part of the population with the score
equal to the cutoff value. Therefore, our results do generalize to countries start primary school at
a different age or countries that use different months as a threshold.

Another important limitation of this study is that we use several RD design estimators which
only identify the treatment effect under particular assumptions. As has been mentioned before, the
continuity assumption is per definition violated as we look at a discrete running variable with a small
number of point masses. A more appropriate option is to use the local randomization approach
here as this does not require continuity. Nonetheless, here we need to make the assumption that
students born in a two month window do not differ in unobserved characteristics which is not
completely realistic.

Furthermore, in this study we only considered the SRD design and not the FRD. In practice, we
know that the compliance rate to these starting-school-age rules is not perfect. However, in the
countries in our study we empirically found a relatively clear starting-school-age rule and therefore
expect that the compliance rate in these countries is high which is also in line with the literature.
Seeing how these results differ when using an FRD design is an interesting avenue for further study.
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