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Abstract

Food insecurity is one of the major threats to development, mainly in vulnerable regions
in sub-Saharan Africa. Predicting the areas which are mostly affected by food insecurity is
crucial to target appropriate policy interventions, to ultimately achieve the goal of ending
world hunger. This paper proposes a multiclass classification model to predict food insecu-
rity at the sub-national level in Chad, using gridded-level information on socio-economic,
climate and health conditions from 2014 to 2021. We find that eXtreme Gradient Boosting
provides the best performance, when evaluated against competing methods. We evaluate
the model across three time different periods. First, we extract the training and test samples
from the full dataset. Second, we train the model with data up to 2018 to predict food inse-
curity in 2019, net of the influence of COVID-19. Lastly, we train the model with data up to
2019 to predict food insecurity in 2020 and 2021. We find that the XGBoost algorithm miti-
gates the impact of the COVID shock in prediction. Finally, we show that the COVID shock
did not affect the structural relationship between key predictors and food instability, which
is strongly driven by climatic events.

*Department of Economics, University of Bologna



1 Introduction

According to the latest UN estimates1, food insecurity is a widespread problem around the
world, which particularly affects poor and vulnerable countries. The sub-Saharan region of
Africa has the highest levels of food insecurity in the world, which has been further exacerbated
by the COVID19 pandemic (Pereira and Oliveira, 2020) and the subsequent global supply chain
disruption (Nekmahmud, 2022). Accurately predicting areas highly affected by food insecurity
is then crucial to ensure targeted policy interventions, to efficiently allocate resources and to
progress toward the goal of ending world hunger by 20302.

This paper proposes a reliable classification algorithm to predict areas which are most affected
by food insecurity in Chad. We tackle the issue of identifying the most important drivers of
this phenomenon by employing granular-level data, providing policy makers with better infor-
mation to design food provision and malnutrition relief policies. We show that our proposed
procedure mitigates the impact of the COVID shock on the performance of the model, without
altering the structural relationship between key predictors and food insecurity.

To do so, we first build a data set at the sub-national level (ADM-2) for Chad, covering the
years from 2014 to 2021. We first collect data on food insecurity at the ADM-2 level from the
Cadre Harmonise data set. Then, we augment the accuracy and quality of the data set with
high quality geo-referenced gridded-level information on climatic conditions, health conditions,
socio-political instability and economic distress. Specifically, for climatic conditions we use a
well-know index of measuring soil dryness and wetness, the Standardized Precipitation Evapo-
transpiration Index (SPEI). We compute a 3-month, 12-month and 48-month moving average to
capture both short- and medium-run effects of changing in the amount of water in the land. We
so capture key determinants of food insecurity through disruption in local agricultural produc-
tion (De Haen and Hemrich, 2007), such as droughts, floods and land degradation. Furthermore,
we employ data on precipitation and temperature to better describe local climatic conditions.
We also include information on the number of hospitals per areas to capture health access and
quality, as well as the intensity of conflicts to measure violence. As economic predictors, we
use gross domestic product (GDP) to control for the economic conditions in each sub-national
region, and we get consumer and producer food price indexes from McGuirk and Burke (2020)
to identify the role of local food price shocks. Ultimately, we include a monthly index of global
supply chain distress build by the Federal Reserve in order to capture global shocks which may
have spillovers at the local level.

Second, we compare two competing machine learning model to assess which is more suitable
for prediction of food insecurity, based on the level of accuracy. Initially, we perform a prelim-
inary analysis through a multivariate logit model along with a group-Lasso, weighted for the
population at the ADM-2 level, to identify the key features for prediction, using the full dataset
available. We extend our analysis by applying an eXtreme Gradient Boosting (XGBoosting) al-
gorithm to improve the predictive power of our model. The model is evaluated on a test set
of 40% of the original data, with hyperparameters optimally chosen by means of appropriate
cross-validation techniques. Overall, we find that XGBoosting outperforms the competing mod-
els with an overall accuracy of 76%. We then repeat the exercise to perform two additional pre-
dictions: (i) a pre-COVID prediction, where we train the model with data up to 2018 to predict
food insecurity in 2019, (ii) a post-COVID prediction, where the model is trained with data up to
2019 to predict food insecurity in 2020 and 2021. We find that, compared with the group-Lasso
approach, the proposed XGBoost algorithm is better suited to account for the COVID shock in

1The sustainable development goals report 2021. Available at https://unstats.un.org/sdgs/report/2021/extended-
report/ Goal%20(2) final.pdf.

2Target 2.1 of UN goals. Report available at https://sdgs.un.org/goals/goal2
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prediction. Ultimately, we provide evidence of a strong role of climatic factors in predicting food
insecurity.

Our paper contributes to the literature on how to predict food insecurity (Dale et al., 2017; Nica-
Avram et al., 2020) and on the identification of the key drivers for early detection of areas with
a high incidence of food insecurity (Hansen et al., 2022; Mason-D’Croz et al., 2019; Pereira and
Oliveira, 2020). From one stand point, we propose a machine learning multiclass classification
algorithm which outperforms standard statistical techniques in predicting food insecurity. Dif-
ferently from other works, we also employ granular data to build covariates, which have proven
to be important drivers of food instability, related to socio-economic factors, health status, and
climatic conditions in the local areas. We argue that the choice to employ granular data to build
the predictors is a key driver of our results, for at least three reasons. First, granular data are
often built by international organization employing cutting-edge techniques, so to have an ac-
curacy which is often much better than competing reported or survey-based measures. Second,
working with aggregate data we would need to downscale predictors at the local level by re-
weighting, which could introduce measurement errors, biasing our results. Last, aggregate data
include several missing values, whose imputation would further increase the uncertainty of our
estimates. We provide evidence for the effectiveness of the predictive power of the algorithm
when accounting for the COVID period, compared to competing models. Ultimately, in line
with the recent literature (Hansen et al., 2022), we confirm the strong role of climate factors for
the prediction of food insecurity,

The rest of the paper is structured as follows: Section 2 introduces the data used in the anal-
ysis and explains the aggregation process performed to build the covariates. Section 3 presents
the employed methodologies, with insights on the importance of both the algorithm choice and
the selection of covariates. Section 4 presents the results obtained in our empirical specification,
which are further discussed in Section 5, along with potential limitations of our approach and
further extensions.

2 Data

This section presents the data used in our analysis. To enrich data quality and availability, we
employ granular-level spatial data to build the covariates which will be used by the algorithms.
Given the quality of the data, the variable are closely representative of local dynamics, avoid-
ing any measurement error which would derive by down-scaling available indicators at more
aggregate levels.

2.1 Food Insecurity Data

Our main source for the analysis is a data set on Administrative Level-2 (ADM-2) sub-national
regions for Chad covering the years from 2014 to 2021. We collect this data from the Cadre Har-
monise Data (CH), which provides food insecurity figures for each administrative sub-national
areas (ADM-2) for three reference periods (January to May, June to August, September to De-
cember). We implement it with a country-specific public health facility database taken from
Maina et al. (2019), that was developed through a systematic and iterative process of data as-
sembly and the

Our main variable of interest is a categorical that describes the overall level of food insecurity
in each ADMIN-2 administrative region. The values for the levels of food insecurity are in
increasing order of distress and are coded as follows: 1 is ”minimal”, 2 is ”stressed” and 3 is
”crisis”. At this stage, the data set consists of 3,094 observations, covering the period 2014-2021.
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2.2 Consumer and Producer Food Prices Indexes

Relevant determinants of food insecurity, and so calories’ intake, are food prices for both pro-
duction and consumption. Food production prices are particularly crucial in areas where sub-
sistence farming is still one of the main source for food supplies, like in the Sub-Saharan region
(Hilson, 2016).

To include prices in our analysis we would require food price data with three general proper-
ties: spatial variation across sub-national levels, variation over time and variation that captures
shocks on local nutrition level of infants. However, collecting this data is not trivial, as they
usually come either at global level or they have to be collected using specific survey data3 in the
country of interest. In this sense, our initial data set contains information on prices of specific
crops. However, these measures present two issues. Firstly, there are a lot of missing values.
Secondly, these prices do not allow to discriminate between consumer and producer side price
pressures, which can quite plausibly affect food security through different channels. For these
reasons we recover gridded-level food price data from McGuirk and Burke (2020). They con-
struct granular (0.5◦ × 0.5◦) standardised food prices indexes for both consumer and producers
for the whole African continent. They do so first combining temporal variation in global crop
prices4 with local-level spatial variation in crop production and consumption patterns (relative
importance of a crop for consumption and production in each grid). As their data only cover the
years 1989–2013, for our analysis we restrict the information to the period 2004-2011. We then
extract an average of each price index for each sub-national level included in our data set. To do
so, we match each grid cell with the sub-national region where most of its area falls. Our price
indexes then vary across sub-national regions (ADM-2) and yearly.

2.3 Climate Data

Next, we recover spatial data on environmental and climatic variables. First, we collect a well-
known climatic measure, the Standardized Precipitation Evapotranspiration Index (SPEI) from
the Global SPEI Dataset5, which provides long-term, robust information about dryness condi-
tions of the soil at the global scale, with a 0.1◦spatial resolution and a monthly time resolution.
This index compares the amount of precipitation and potential evapotranspiration to obtain
measures of drought, land deterioration and floods based on water balance. The SPEI takes on
values ranging from -3 (extreme drought) to +3 (flood). We use this information to recover three
variables: spei03, spei12, and spei48, 3, 12 and 48 moving averages respectively. We then aver-
age these three variables over the months of interest, based on the reference code variable. These
variables allow to capture both long-run (land deterioration through absence of groundwater),
short-run and seasonal (extreme events) consequences of absence and abundance of precipita-
tion.

Second, we obtain average monthly temperatures and cumulative precipitations data at 0.5◦ res-
olution from the Climate Research Unit (CRU TS v4.07) of the University of East Anglia (Harris
et al., 2014).

Similar to food prices, we match each grid cell with the sub-national region where most of its
area falls. We then extract population6 weighted averages of all the climatic variables for each

3Such as the Living Standard Measurement Studies from World Bank.
4The prices are taken from the IMF (International Monetary Fund) International Finance Statistics series and the

World Bank Global Economic Monitor.
5We employ version 2.8. Available at: https://spei.csic.es/database.html
6It is standard in the climate economics literature to weight by population climatic variables (Dell

et al., 2014). We use gridded population data from Gridded Population of the World (GPW), v4
(https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-count-rev11)
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ADM-2 regions. Overall, our climatic information will vary both spatially (ADM-2) and across
reference periods.

2.4 Conflict

Conflicts are commonly identified as one of the major contributor in poor food security condition
since it affects farming, livelihood and markets, as well as being crucial in limiting international
support (Africa Center for Strategic Studies, 2022). The Uppsala Conflict Data Program7 (UCDP)
provides geocoded information on organized violence and armed conflict. We gather this data
to recover two variables: a dummy, which takes value 1 if any conflict took place within the
area of interest, and a variable for conflict intensity (the number of casualties), which takes into
account the impact of a given conflict. Thanks to the geocoded and time information provided
for each conflict, we are able to construct these measures at the subnational and reference period
level.

2.5 Gross Domestic Product

We obtain granular information on Gross Domestic Product (GDP) from Murakami and Yama-
gata (2019). They provide downscaled estimates gross domestic product (GDP) into 0.5-degree
grids for each decade, for the periods 2010-2100. Their downscaling approach has the nice prop-
erty of well capturing the difference between urban and non-urban areas. We use the gridded
information from 2010 to 2020, and we employ an exponential imputation to determine the level
of GDP at each cell in each year for the period 2014-2021. We then apply the usual methodology
of extracting the spatial information at the ADM-2 level. Our measure of GDP then vary across
sub-national regions (ADM-2) and yearly.

2.6 Health facilities

An important missing feature from the initial data set are information on health access in Chad.
We gather data on the geographical distribution of hospitals within Chad from Maina et al.
(2019). The authors build the data set through a variety of sources, such as the Ministry of
Health (MoH) website or the United Nations Office for the Coordination of Humanitarian Af-
fairs’ (UNOCHA) Humanitarian Data Exchange (HDX) portal. Similarly to the UCDP dataset,
we are provided with the geocode information of each hospital. We can so construct two vari-
ables as proxies of the access to healthcare at the sub-national level (ADM-2): i) a measure of the
intensity of hospital and ii) a dummy for the presence of a hospital. Overall, our health variables
vary only spatially across sub-national regions (ADM-2).

2.7 Supply Chain Distress

Following Akinci et al. (2023), supply factors are some of the main drivers of the global increas-
ing inflation after the COVID-19 period. To tackle this indicators, the Federal Reserve Bank of
New York built the Global Supply Chain Price Index with measures of chain-related costs from
manufacturing firms through data from Baltic Dry Index (BDI), the Harpex index, as well as the
U.S. Bureau of Labor Statistics and the Purchasing Managers’ Index (PMI) surveys.8 This may be
useful for our purpose since it captures food provision issue related to global shocks that affect
food security in a particular sub-national level.

7Available at: https://ucdp.uu.se/
8Available at: https://www.newyorkfed.org/research/gscpi.html
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2.8 Descriptive Analysis

Figure 1 provides the evolution of our main variable over time, describing the trend of food
insecurity in Chad for the years 2015, 2018 and 2021 in the last period of the year, namely from
September to December. The distribution is quite diverse across the three years. In 2015 (1a)
half of the region can be considered under food insecurity distress, since it belongs to class two
or higher. Despite showing a partial improvement in 2018, the map tells a worrying story for
2021, as conditions have worsened significantly for the whole of Chad, with new food insecu-
rity hot-spots emerging in the South of the country. As documented by the literature (Pereira
and Oliveira, 2020), food insecurity experienced a dramatic increase as a consequence of the
COVID19 pandemics. Panel (1c) summarises this result showing that the majority of the admin-
istrative areas are now classified as a level 2 or above, while only few regions are in the level 1
class.

Figure 1: Geographical evolution of food security at ADM-2 level

(a) 2015 (b) 2018 (c) 2021

3 Methodology

The purpose of this section is to assess the most effective machine learning methods to predict
areas with high food insecurity, using all the possible meaningful information in the data we
collect. Moreover, we aim at defining the covariates that explain most of the variance in food
insecurity, and therefore they have higher influence in identifying the hot-spots with the highest
threat to food security. Each method is applied on three different samples. First, we employ
the full dataset to extract the train and the test sample to perform evaluation. Second, we train
the model on the sample up to 2018 to predict food insecurity for 2019, to net out the effects of
COVID19. Last, we use data up to 2019 as the train set to test the model on data for 2020 and
2021, to asses the accuracy of the model in predicting food insecurity in the post-COVID period.

3.1 Multinomial Logistic Lasso

We start our analysis by proposing a benchmark model, in particular, we focus on a standard
multivariate Logit model, that is:

P (Y = r | xi) =
exp (βr0 + x′iβr)

∑k
s=1 exp

(
βs0 + x′iβs

) (1)

where xi is the full matrix of covariates for the i-th observation for the categorical variable Y. We
perform features’ selection by applying a weighted group Lasso (Meier et al., 2008) to shrink the
coefficients of the least-predictive covariates. The weights for the Lasso are based on the popula-
tion in each administrative area (ADM-2), in order to account for potential size differences across
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counties. This leads to perform a penalized likelihood problem which takes the form (Tutz et al.,
2015):

θ̂ = argmax
θ∈Rd

lp(θ) = argmin
θ∈Rd

(−l(θ) + λJ(θ)) (2)

where lp is the log-likelihood for the multivariate logistic distribution, while J(θ) is a l1 penalty

of the form J(β) = ∑G
g=1 s

(
dfg

) ∥∥∥βg

∥∥∥
2
.

Figure 2: Choice of Tuning Parameter Lambda (10-fold Cross Validation)

In the full sample case, we train the model on 60% of the sample and test it on the remaining
40%, a conservative choice to mitigate the problem of over-fitting.

The tuning parameter λ is chosen by means of 10-fold cross-validation on the training set max-
imising the Area (AUC) under the Receiver Operating Characteristics (ROC), and based on the
”one-standard error rule” (Figure 2). The reason is the one-standard error rule allows to choose
the simplest model whose accuracy is comparable with the best model (Krstajic et al., 2014).
At the end of estimation, we are left with 28 predictors. Variable selection confirms the im-
portance of external measures of climate and price shocks, which motivates their inclusion in
subsequent models, along with measures of health and exposure to conflict and natural risk
well-documented in the literature (Katona and Katona-Apte, 2008). The selected coefficients for
the total sample are presented in Table 3 in the Appendix.

3.2 Extreme Gradient Boosting

As a next step, we extend our analysis with an eXtreme Gradient Boosting (XGBoost) algorithm,
a flexible technique which improves on the previous analysis by ensembling different weak
models in order to produce a more precise prediction in terms of variance, thereby improving
over the first benchmark specification, increasing the accuracy of the model. Boosting algo-
rithms are ensemble averages of weak learners, i.e. trees, which are aggregated to reduce the
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variance of the model. An alternative to boosting would be to apply random forests. However,
in a companion paper9, we show that XGBoost proves to be more accurate in a similar setting,
which may be imputed to the advantage that the boosting algorithm works sequentially, with
each tree learning from the residuals of the previous ones. This feature is particularly attractive
in our setting, where we work with spatial data where complexity and non-linearities challenge
features’ extraction. In our framework, we employ the XGBoost algorithm, where the sequence
of trees is derived by minimizing an objective function as a function of the input classes. Given
the multiclass classification problem of interest, the four classes of interest are assigned a nor-
malized probability distribution through a softmax function of the form:

σ(z)i =
ezi

∑K
j=1 ezj

(3)

where z is the input vector of interest for the i = 1, . . . , 4 classes. Using these softmax probabili-
ties, the algorithm minimizes the cross-entropy loss:

LCE = −
n

∑
i=1

yi log (σi) (4)

The algorithm minimizes the objective function by means of gradient-descent optimization im-
proving the classification error as the number of rounds of minimization increases.

To tune the great amount of hyperparameters10 used in XGBoosting, we run 5-fold cross valida-
tion 100 times on the training set (60% of the original data set), each time with random parame-
ters.

9Case A
10This includes the number of rounds, the step size shrinkage used in update to prevents overfitting, the maximum

depth of a tree, the minimum sum of instance weight (hessian) needed in a child, the maximum delta step we allow
each leaf output to be, the best seed, and so on.
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4 Results

4.1 Model Perfomances

We now turn to the comparison of the models across different choices for training and test sam-
ples. Table 1 shows several performance measures compared across the three models of interest.

Table 1: Performance of the Prediction of Food Insecurity - Comparisons across Lasso training
and test sets

Lasso: total sample Lasso: pre-COVID Lasso: post-COVID
Metrics Food insecurity (1) (2) (3)

Accuracy 0.67 0.56 0.37

Cohen’s K 0.43 0.23 0.03

Sensitivity

Minimal 0.64 0.66 0.98

Stressed 0.76 0.49 0.00

Crisis 0.42 0.91 0.15

Specificity

Minimal 0.83 0.71 0.04

Stressed 0.61 0.67 0.99

Crisis 0.98 0.89 0.99

AUC

Minimal - - -

Stressed 0.83 0.72 0.50

Crisis 0.74 0.58 0.50

Notes: AUC stays for Area under the Receiving Operating Characteristic (ROC) curve. For AUC the reference category is ”Minimal”
Food Insecurity.
Pre-COVID refers to the period 2014-2018, with 2019 as a test set.

As can be seen in column (1), the benchmark model is not very well suited for prediction, with
an overall accuracy of 67%. The limitations of this approach emerge from sensitivity results:
much of the areas that are affected by ”crisis” level of food insecurity are incorrectly captured
by the algorithm. This is not an encouraging result for designing policy intervention.

A crucial take-away from this exercise are the differences in performance when changing the
training and test sample for our prediction algorithm appear glaring (Columns (2) and (3)).
When we focus on pre-COVID data the predictive power of the model drops, as we around 20%
of the total observations. As per column (3) of Table 1, almost all measures are worse, with the
accuracy dropping as low as 37%. This suggests that Lasso does not perform when a huge shock
like COVID19 highly changes the context (test set) where the prediction has to be conducted.
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Table 2: Performance of the Prediction of Food Insecurity - Comparisons across XGBoost train-
ing and test sets

XGB: total sample XGB: pre-COVID XGB: post-COVID
Metrics Food insecurity (1) (2) (3)

Accuracy 0.76 0.60 0.57

Cohen’s K 0.60 0.24 0.28

Sensitivity

Minimal 0.79 0.71 0.89

Stressed 0.75 0.47 0.44

Crisis 0.70 0.27 0.23

Specificity

Minimal 0.82 0.58 0.54

Stressed 0.78 0.71 0.74

Crisis 0.98 0.96 0.99

Notes: Pre-COVID refers to the period 2014-2018, with 2019 as a test set.

Table 2 displays the performance of the XGBoost algorithm across our different specifications.
Overall, we notice that the eXtreme Gradient Boosting performs much better than Lasso over all
the three choices for training and test sets, with an accuracy of 76% in the full sample estimate.
This supports our choice to employ such an algorithm for classification, as our preferred speci-
fication performs quite well in predicting food insecurity.

Aside from an important gain in overall accuracy, we can see how the algorithm is able to con-
sistently disentangle the areas with ”crisis” level of food insecurity, which are the most crucial to
identify. An additional rationale for this further implementation can be seen looking at the sen-
sitivity and specificity of the model for the same category. If the specificity is almost unchanged
with respect to the Lasso algorithm, there is a sizeable improvement in sensitivity. We argue
that this is a non-negligible feature for a model which aims at predicting critical levels of food
insecurity, correctly identifying areas at risk and finally targeting mitigation policies.

Additionally, the concerns about using pre-COVID data to predict post-COVID outcomes are
mitigated. As can be seen by comparing columns (2) and (3), the difference in performance is
now much smaller, with accuracy dropping of only 3%. This suggests the predictive power of
XGBoosting, despite the likely presence of structural breaks due to the pandemic shock.

4.2 Relative Importance

The proposed estimation strategy allows us to disentangle the relative importance of the predic-
tors in the eXtreme Gradient Boosting algorithm, which greatly informs about the relevance of
each variable in predicting malnutrition.
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Figure 3: Top-5 Predictors by Relative Importance - Total sample, XGBoost

Figure 3 shows the five most predictors in the XGBoost algorithm. The variables are presented in
order of decreasing importance. First, we can notice how weather variables, precipitation (pre)
and temperature (tmp) are the most relevant variables for food insecurity. A less important role
is played by short-term SPEI (avg spei03), GDP (gdp) and the supply chain index (sci). These
findings are coherent with the literature on the effects of climate shocks on local populations
and with the literature on the role of global price shocks on local populations.

Critically, if we consider the other two samples, the relevant importance of these variables re-
main quite the same. This means there are no changes in the main determinants of food security
even when a structural break like COVID19 may occur.

5 Discussion and conclusion

We propose an effective multiclass classification model based on machine-learning tools to pre-
dict food insecurity in Chad. Using appropriate features’ selection procedure, we are able to
identify the key predictors of food insecurity. Our model of choice, which performs well both in
terms of accuracy and true-positive rates, is based on an eXtreme Gradient Boosting procedure
applied on a relevant subset of predictors, providing an accuracy of 76%, along with information
on the contribution of each of the variables of interest.

We find that XGBoosting proves to be effective at partially mitigating the prediction issues that
necessarily emerge in the presence of structural breaks. This improvement is especially notable
when comparing the algorithm with a Lasso model. We argue that this is a good tool for policy
makers that need to target policy, especially in response to a crisis. The ability of the model to
overcome a significant and multi-dimensional shock like COVID-19, and to still retain its predic-
tive power is a remarkable feature that should be kept in mind by humanitarian organizations
and institutions alike.
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We show that the inclusion of granular, gridded data is an effective and often viable choice to
achieve high prediction accuracy. We argue that the inclusion of these variables provides a sig-
nificant improvement in terms of predicting and hence preventing food insecurity. Specifically,
we identify some main advantages of our methodology. First, given that the price index pro-
posed by McGuirk and Burke (2020) uses global price trends of agricultural goods, forecasts of
these trends are easily accessible and can be therefore used for policy. Under the fair assumption
of a slowly-changing agricultural structure, global price trends can be effectively used to infer
areas particularly exposed to children malnutrition. Secondly, we have shown that medium-
run trends of climate risk also can inform in advance about areas which could be exposed to
malnutrition problem. Third, given the often uncertain nature of the political and institutional
environment in Africa, we argue that the ability to rely on gridded, geographically coded and
easily measurable variables for prediction constitutes an important improvement over other ex-
isting methods. Lastly, a potential extension of our work would be to run these machine learning
methods directly on the spatial grids rather at the sub-national level. This would likely improve
the estimates, as there would be more observations, and it would include more spatial correlated
features.

Our work presents important limitations. The main drawback of the model is related to the lack
of access to data on local impact of the COVID-19 pandemic, which could be informative for the
diffusion of food uncertainty in local areas in the post-COVID period. A possible extension in
this direction would be to enrich the data with plausible proxies of COVID impact, such as excess
deaths or the number of infected individuals. An additional drawback of the model is related
to data quality and availability. We employ price indexes which are not updated with the latest
price trends. They only serve as a proxy of current price trends. An immediate extension would
be to build a novel index based on more recent price series, also controlling for potential changes
in the local agricultural shares. Additionally, the data we use for GDP estimates is not available
for the whole time window of our sample. Hence, some data need to be imputed, which can
be a source of bias and uncertainty. It is also difficult to argue that GDP, albeit granular and
population weighted, necessarily represents the best choice for estimating income in rural and
isolated areas, such as some regions of Chad. Similarly, the data we gather from Akinci et al.
(2023) on supply chain stress are only available globally. Indeed, one can reasonably expect
that such a shock might have drastically different impacts across regions. Ideally, this measure
would include considerations about, for instance, quality of local infrastructure.
Finally, we need to acknowledge the complete lack of causality in the estimation framework.
While the algorithms provided are useful to identify key predictors of children malnutrition
and to have an initial indication of where policies needs to be targeted, there is no clear answer
on which policies should be preferred or which channels should be prioritized for prevention.
In this sense, the large recent literature on tackling causality in machine-learning models (Pearl,
2019; Prosperi et al., 2020) can further improve the analysis by offering guidance on the causal
drivers of malnutrition, which should be prioritized by policymakers.
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Appendix

Table 3: Lasso variable selection - Total sample

variables cat0 cat1 cat2
1 (Intercept) 12.260 2.356 -14.616
2 adm1 pcod2 TD02 -0.123 -0.178 0.301
3 adm1 pcod2 TD03 1.916 -1.444 -0.472
4 adm1 pcod2 TD04 -1.024 -0.480 1.504
5 adm1 pcod2 TD06 -2.313 -0.394 2.707
6 adm1 pcod2 TD07 -1.532 -0.351 1.883
7 adm1 pcod2 TD08 0.506 -0.315 -0.191
8 adm1 pcod2 TD09 -0.047 0.206 -0.159
9 adm1 pcod2 TD10 0.272 -0.118 -0.154

10 adm1 pcod2 TD11 1.428 -0.793 -0.634
11 adm1 pcod2 TD12 0.661 -0.387 -0.274
12 adm1 pcod2 TD14 -0.723 0.727 -0.004
13 adm1 pcod2 TD15 0.463 -0.355 -0.108
14 adm1 pcod2 TD16 0.653 -0.318 -0.335
15 adm1 pcod2 TD17 -2.539 -0.628 3.167
16 adm1 pcod2 TD19 -1.423 -0.705 2.128
17 adm1 pcod2 TD20 -0.219 0.214 0.005
18 adm1 pcod2 TD21 0.321 -0.170 -0.151
19 adm1 pcod2 TD22 -1.992 0.188 1.804
20 adm1 pcod2 TD23 -0.912 -0.385 1.297
21 avg spei03 0.030 -0.020 -0.011
22 avg spei12 -0.045 0.217 -0.172
23 avg spei48 0.119 -0.187 0.068
24 conflict d 0.177 0.734 -0.911
25 gdp imp 0.000 -0.000 -0.000
26 pre -0.003 0.000 0.003
27 sci 0.015 -0.026 0.011
28 tmp -0.389 -0.039 0.428
29 z PPI 0.113 -0.100 -0.013
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Figure 4: Relative importance of coefficients

(a) pre-Covid

(b) post-Covid
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