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Abstract

Malnutrition is one of the leading causes of infant mortality in the Sahel region in Africa.
Predicting hot-spots of child wasting is then crucial for policymakers to intervene in a de-
cisive and timely fashion. This paper proposes a multiclass classification model to predict
wasting, using sub-national information on nutrition and health. We find that eXtreme Gra-
dient Boosting provides the best performance, when evaluated against competing methods.
Particularly, XGBoosting predicts wasting with an accuracy of 84% on the test set. We also
show that enriching the data with information on consumer and producer local food prices
significantly increases the models’ predictive power. Finally, we highlight that local food
prices and climatic conditions emerges as the main fundamental determinants of infant se-
vere malnutrition in the Sahel region.



1 Introduction

Prevention of malnutrition is one of the main tasks tackled by humanitarian organizations. Ac-
cording to the latest Unicef estimates1, around 3.6 million children in Eastern and Southern
Africa are in urgent need of life-saving treatment for severe wasting. Malnutrition has been
shown to be the primary cause of immunodeficiency in infants (Katona and Katona-Apte, 2008),
hindering to psycho-motor development (McDonald et al., 2013) and detrimental to long-run
health (Victora et al., 2008). It appears evident that accurate prediction of possible hotspots for
malnutrition is of pivotal importance not only to alleviate this dramatic issue, but to also prevent
it from causing irreparable, long-lasting damage to individuals and societies alike.

This paper responds to the need for a reliable classification algorithm to predict the burden of
severe infant (6-59 months) malnutrition, i.e. wasting, in the Sahel region of Africa. We also
tackle the issue of identifying the most important drivers of this phenomenon, providing policy
makers with better information to design food provision and malnutrition relief policies.

To do so, we first build a data set at the sub-national level (ADM-2) for 8 Sub-saharian countries
observed from 2020 to 2022. We collect data on burden of wasting and its potential health, nat-
ural and socio-economic determinants from various sources. Moreover, we enrich the starting
data set with gridded-level information on climatic conditions, and consumer and producer lo-
cal food prices. Specifically, for climatic conditions we use a well-know index of measuring soil
dryness and wetness, the Standardized Precipitation Evapotranspiration Index (SPEI). We com-
pute both a 12-month and 48-month moving average to capture both short- and medium-run
effects of changing in the amount of water in the land. As for prices, we use consumer and pro-
ducer food price indexes, proposed and compiled by McGuirk and Burke (2020), which allows
us to also include local food price shocks as covariates. Before the empirical analysis, we also
tackle the large number of missing values of the data set using imputation, whenever possible.
Specifically, we impute data at the administrative level (ADM-2) by averaging, using popula-
tion weights at higher administrative areas (ADM-1 and ADM-2), the observed information at
ADM-2.

Second, we compare three different machine learning tools to identify the most accurate at pre-
dicting infant wasting. Initially, we perform a preliminary analysis through a multivariate logit
model along with a group-Lasso, weighted for the number of children from 6 to 59 months at
the local level, to identify the key features for prediction. As expected, the model can be sensibly
improved in terms of accuracy, but reinforces the importance, among well-established variables
related to nutrition and exposure to risk, also of external variables in predicting child malnu-
trition. We extend our analysis by applying a Random Forest classification algorithm aimed at
minimising the classification error rate of the model, which also allows us to assess the relative
contribution of each variables for prediction. Lastly, we implement eXtreme Gradient Boosting
(XGBoosting) to further improve the predictive power of our model. Each model is evaluated on
a test set of 40% of the original data, with hyperparameters optimally chosen by means of appro-
priate cross-validation techniques. Overall, we find that XGBoosting outperforms the competing
models with an overall accuracy of 84%. We also show that both the SPEI and price indexes are
significant predictor of child malnutrition, boosting model prediction, hence suggesting impor-
tant channels spanning from economic forces.

Our paper contributes to the literature on how to predict the burden of severe malnutrition (Bulti
et al., 2017; Dale et al., 2017; Isanaka et al., 2021). From one stand point, we propose machine
learning multiclass classification algorithms which outperform standard statistical techniques in

1Unicef press release, January 2022. Available at: https://www.unicef.org/esa/press-releases/children-lack-life-
saving-treatment-for-severe-wasting
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predicting infants with severe malnutrition. Moreover, differently from previous works, we in-
clude local producers and consumers’ prices, which prove to be key determinants in identifying
areas with severe child malnutrition. We show that they not only sensibly increase the accuracy
of the model, but they also emerge as fundamental drivers of wasting. This is in line with exist-
ing literature showing that local malnutrition is deeply intertwined with global price dynamics
(Cudjoe et al., 2010), with food price shocks associated to more severe malnutrition (Cornia et al.,
2016), ultimately affecting individuals which are most exposed to risk (Bloem et al., 2009).

The rest of the paper is structured as follows: Section 2 introduces the data used in the analy-
sis and explains the process of imputing and data-augmenting undertaken preliminary to the
analysis. Section 3 presents the empirical framework, with insights on the importance of both
the algorithm choice and the selection of covariates, with a focus on external measures. Sec-
tion 4 presents the results obtained in our empirical specification, which are further discussed in
Section 5, along with potential limitations of our approach and further extensions.

2 Data

This section presents the data used in our analysis. To address our research questions, we re-
quire data with specific features: first, we need sub-national information on infant nutrition to
measure the level of child wasting and more in general malnutrition in a specific area. Second,
we also require geographically disaggregated information on health conditions, institutional
settings, climatic variables and food prices to enrich the data set.

2.1 Nutrition and Health Data

Our main source for the analysis is a data set on Administrative Level-2 (ADM-2) sub-national
regions for 8 Subsaharian countries covering the years from 2020 to 2022. We collect this data
from three main reference sources: (i) the Hotspot Analysis Data (HA), which provides malnu-
trition burden figures for each administrative sub-national areas; (ii) the Nutrition Survey Data
(NS), with information on both nutrition and physical deterioration (diseases) at the individual
level, that we then aggregate at the subnational level (ADM-2); (iii) the INFORM Sahel data2,
which collects more than 40 indicators on several measures of inequality, exposure to risk and
political instability at the ADM-1 level.

Through this data collection we build our main variable of interest: a categorical variable indicat-
ing the level3 of severe malnutrition, particularly wasting, based on burden4 of infants between
6 and 59 months in each sub-national region.

At this stage, the data set consists of 1203 observations for the countries of interests.

2.2 Food Prices

Relevant missing determinants of infant malnutrition from the previous data source are food
prices for both production and consumption. Food production prices are particularly crucial
in areas where subsistence farming is still one of the main source for food supplies, like in the
Sub-Saharan region (Hilson, 2016).

2It is initiated by the Emergency Response and Preparedness Group of regional Inter-Agency Standing Committee
(IASC)

3The categorical variable is classified as follows: ”Low” (0), ”Medium” (1), ”High” (2) and ”Very High”(3)
4We distinguish burden from prevalence in our analysis. Particularly, we use the former as a more adequate mea-

sure of the level of malnutrition in a geographical area. Burden is obtained as follows: Burden = PrevalentCases +
IncidentCases = Population6−59months × Prevalence(1 + ICF), where ICF = 1.6
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To include prices in our analysis we would require food price data with three general proper-
ties: spatial variation across sub-national levels, variation over time and variation that captures
shocks on local nutrition level of infants. However, collecting this data is not trivial, as they
usually come either at global level or they have to be collected using specific survey data5 in the
country of interest. We therefore decide to use food price data from McGuirk and Burke (2020).
They construct gridded (0.5◦ × 0.5◦) standardised food prices indexes for both consumer and
producers for the whole African continent. They do so first combining temporal variation in
global crop prices6 with local-level spatial variation in crop production and consumption pat-
terns (relative importance of a crop for consumption and production in each grid).
As their data only cover the years 1989–2013, for our analysis we restrict the information to the
period 2010-2012. We then extract an average of each price index for each sub-national level
included in our data set. To do so, we match each grid cell with the sub-national region where
most of its area falls.7

2.3 Global Drought Monitor

One drawback from INFORM Sahel data is that they provide ADM-1 rather than ADM-2 sub-
national information. As we cannot geographically improve all the indexes that are included in
the INFORM Sahel data, we decide to enhance only few well-known drivers of infant malnutri-
tion for which the data are easily accessible: land degradation, floods and droughts. To do so,
we collect a climatological measure, the Standardized Precipitation Evapotranspiration Index
(SPEI) from the Global SPEI Dataset8, which provides long-term, robust information about dry-
ness conditions of the soil at the global scale, with a 0.1◦spatial resolution and a monthly time
resolution. This index compares the amount of precipitation and potential evapotranspiration
to obtain measures of drought, land deterioration and floods based on water balance. The SPEI
takes on values ranging from -3 (extreme drought) to +3 (flood). We use this information to
recover two variables: spei12, a 12-month moving average of the index, which we average over
the calendar year, and avg spei48, which is a 48-month average instead.9 These two variables
allow to capture both long-run (land deterioration through absence of groundwater) and short-
run (extreme events) consequences of absence and abundance of precipitation. Similar to food
prices, we match each grid cell with the sub-national region where most of its area falls. We then
extract population10 weighted averages of the two variables for each ADM-2 regions.

2.4 Imputation

Even after enriching the data set with climatic and food prices information, the data set still
presents a large number of missing values. Thus, we need to make proper adjustments before
starting the analysis. First, we apply a re-balancing of the data set imputing missing values at
the most disaggregated administrative level (ADM-2) by averaging, for each country j and year
t, the non-missing ADM-2 observations at the higher administrative level (ADM-1), weighting
by the share of population of the ADM-2 (POPADM-2

j,t ) over the total population at the ADM-1

level (POPADM-1
j,t ). Mathematically, the imputed values X̂ for variables at the ADM-2 level for

5Such as the Living Standard Measurement Studies from World Bank.
6The prices are taken from the IMF (International Monetary Fund) International Finance Statistics series and the

World Bank Global Economic Monitor.
7We recover two shapefiles: (i) for the Sahel area from Humdata and (ii) for Sierra Leone from GADM.
8We employ version 2.8. Available at: https://spei.csic.es/database.html
9As crops planting and agricultural planning typically happens several months in advance to the actual harvest

and tends to have lasting implications, we focus on the index for the calendar year preceding the year of interest for
a given observation in the main data set.

10It is standard in the climate economics literature to weight by population climatic variables (Dell
et al., 2014). We use gridded population data from Gridded Population of the World (GPW), v4
(https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-count-rev11)
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year t and country j are then:

X̂ADM-2
j,t = ∑

ADM-1
XADM-2

j,t ·
POPADM-2

j,t

POPADM-1
j,t

(1)

As we are still left with several missing values, we repeat the same procedure averaging at
country-level. That is, that the imputed values are obtaines as follows:

X̂ADM-2
j,t = ∑

ADM-0
XADM-2

j,t ·
POPADM-2

j,t

POPADM-0
j,t

(2)

After this imputing procedure, we are left with 711 observations which can be effectively used
for the empirical analysis. The target variable for the remaining observations are balanced across
the four classes of interest, with a prevalence of people at high (3) and very high (4) level of risk.
This means that if the predictive model were not performing well, the results obtained would
be skewed toward a more pessimistic classification in terms of risk of malnutrition.

Figure 1 provides a visualization of some of the data features discussed in this section. Panel
(1a) shows the distribution of wasting burden across the Sahel region. The missing values are
concentrated in South and Eastern Nigeria, as well as in Southern Chad. Panel (1b) shows the
distribution of producer prices in 2012. Unsurprisingly, the closer a region is to the Sahara desert,
the lower the index is. Producer indexes are instead higher towards the Atlantic coast and spike
the highest in Northern Nigeria. Moreover, we also notice that areas with high production prices
tends to have high severe infant malnutrition. Panel (1c) shows the distribution of long-term
soil dryness across Sub-Saharan Africa: specifically, areas with wetter soils (above average) are
plotted in blue, while areas that suffered droughts are plotted in red.

Figure 1: Geographical distribution of wasting burden (2022), producer price index (2012) and
SPEI 48 (2021) index in the Sahel region

(a) Wasting burden (b) Producer Price Index (c) SPEI48

3 Methodology

The purpose of this section is to assess the most effective machine learning methods to predict
severe malnutrition, i.e. wasting, using all the possible meaningful information in the data we
collect. Moreover, we aim at defining the covariates that explain most of the variance in severe
malnutrition, and therefore they have higher influence in identifying the hot-spots of wasting
in the Sahel region. Finally, we want to test how much the inclusion of food prices as covariate
may improve the estimation.
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3.1 Multinomial Logistic Lasso

We start our analysis by proposing a benchmark model, in particular, we focus on a standard
multivariate Logit model, that is:

P (Y = r | xi) =
exp (βr0 + x′iβr)

∑k
s=1 exp

(
βs0 + x′iβs

) (3)

where xi is the full matrix of covariates for the i-th observation for the categorical variable Y. We
perform features’ selection by applying a weighted group Lasso (Meier et al., 2008) to shrink the
coefficients of the least-predictive covariates. The weights for the Lasso are based on the popula-
tion of children aged 6 to 59 months in each administrative area (ADM-2), in order to account for
potential size differences across countries. This leads to perform a penalized likelihood problem
which takes the form (Tutz et al., 2015):

θ̂ = argmax
θ∈Rd

lp(θ) = argmin
θ∈Rd

(−l(θ) + λJ(θ)) (4)

where lp is the log-likelihood for the multivariate logistic distribution, while J(θ) is a l1 penalty

of the form J(β) = ∑G
g=1 s

(
dfg

) ∥∥∥βg

∥∥∥
2
.

For the feature selection we include most of the covariates available in the data set. Indeed, we
first exclude any variables that directly measures malnutrition (such as ”Malnutrition”, ”gam prevalence”
and ”sam prevalence”) as they create spurious predictability with the dependent variable. Sec-
ond, we keep only the disagreggated indicator from the INFORM Sahel data, dropping the ag-
gregated indexes.11

Figure 2: Choice of Tuning Parameter Lambda (10-fold Cross Validation)

11For instance, we include as covariate ”Political Violence” and ”Conflict Probability”, but we exclude ”Human”
which is simply the weighted average of the two.

6



We train the model on 60% of the sample and test it on the remaining 40%, a conservative choice
to mitigate the problem of over-fitting.
The tuning parameter λ is chosen by means of 10-fold cross-validation on the training set max-
imising the Area (AUC) under the Receiver Operating Characteristics (ROC), and based on the
”one-standard error rule” (Figure 2). The reason is the one-standard error rule allows to choose
the simplest model whose accuracy is comparable with the best model (Krstajic et al., 2014).
At the end of estimation, we are left with 23 predictors over the original 31. Variable selection
confirms the importance of external measures of climate and price shocks, which motivates their
inclusion in subsequent models, along with measures of health, nutrition and exposure to con-
flict and natural risk well-documented in the literature (Katona and Katona-Apte, 2008). The
selected coefficients are presented in Table 2 in the Appendix.

3.2 Random Forests

As a next step, we extend our analysis with a random forest predictive algorithm. Random
forests are a flexible estimation technique which improves on the previous analysis by ensem-
bling different weak models in order to produce a more precise prediction in terms of variance.

As for Lasso, we train the model on 60% of the sample and test it on the remaining 40%. To fully
exploit the variability in the data, we generate B = 1000 independent bootstrap samples and fit
a classification tree to each of these data sets, for which only m ≪ p predictor are included and
allow to leverage the information stemming from independent fits and minimize the variance
of the model. The main tune parameter for random forest is the number of variables randomly
sampled as candidates at each split and the number of trees. We determine the optimal number
of predictors based on accuracy after a 10-fold cross-validation repeated 5 times.12

Figure 3: Optimal Number of Predictors at Each Split (10-fold Cross Validation)

12Note that we can also tune the number of trees. However, as it is computationally intensive, we prefer to focus
only the number of features at each split.
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Figure 3 shows the number of predictors in the model as a function of accuracy. Ultimately, we
select the number of predictors which maximize accuracy, that amounts to m = 10 predictors.
The performance of the model is ultimately assessed on a test set consisting of 40% of the origi-
nal data.

3.3 Extreme Gradient Boosting

Random forests should help to a sensible improve over the first benchmark specification, in-
creasing the accuracy of the model. This is particularly relevant in our setting, where we have
a large number of highly correlating covariates which could bias our conclusion. However, we
can further boost accuracy while minimizing the variance of the model through a boosting clas-
sification algorithm to further exploit the complexity of the data. Similarly to random forests,
boosting algorithm are ensemble averages of weak learners, i.e. trees, which are aggregated to
reduce the variance of the model. The main difference with respect to random forests is that
the boosting algorithm works consequentially, with each tree learning from the residuals of the
previous ones. This feature is particularly attractive in our setting, where we work with spa-
tial data where complexity and non-linearities challenge features’ extraction. In our framework,
we employ the eXtreme Gradient Boosting algorithm, where the sequence of trees is derived by
minimizing an objective function as a function of the input classes. Given the multiclass clas-
sification problem of interest, the four classes of interest are assigned a normalized probability
distribution through a softmax function of the form:

σ(z)i =
ezi

∑K
j=1 ezj

(5)

where z is the input vector of interest for the i = 1, . . . , 4 classes. Using these softmax probabili-
ties, the algorithm minimizes the cross-entropy loss:

LCE = −
n

∑
i=1

yi log (σi) (6)

The algorithm minimizes the objective function by means of gradient-descent optimization im-
proving the classification error as the number of rounds of minimization increases.

To tune the great amount of hyperparameters13 used in XGBoosting, we run 5-fold cross valida-
tion 100 times on the training set (60% of the original data set), each time with random parame-
ters.

The results obtained with the optimal hyperparameters are then evaluated on a test set of 40%
of the original data set.

13This includes the number of rounds, the step size shrinkage used in update to prevents overfitting, the maximum
depth of a tree, the inimum sum of instance weight (hessian) needed in a child, the maximum delta step we allow
each leaf output to be, the best seed, and so on.
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4 Results

4.1 Model Perfomances

We now turn to the comparison of the models proposed in the previous section.

Table 1: Performance of the Prediction of Severe Malnutrition on the Test Set - Comparisons
across Machine Learning Methods

Lasso Random Forest XGBoost
Metrics Wasting Class (1) (2) (3)

Accuracy 0.593 0.800 0.835

Cohen’s K 0.406 0.711 0.748

Sensitivity

Low 0.368 0.632 0.818

Medium 0.690 0.798 0.915

High 0.561 0.785 0.735

Very High 0.587 0.867 0.844

Specificity

Low 1.000 0.996 0.996

Medium 0.766 0.901 0.896

High 0.702 0.871 0.907

Very High 0.924 0.938 0.943

AUC

Low - - -

Medium 0.959 0.989 .

High 0.836 0.949 .

Very High 0.701 0.908 .

Notes: AUC stays for Area under the Receiving Operating Characteristic (ROC) curve. For
AUC the reference category is ”Low” Wasting.

Table 1 shows several performance measures compared across the three models of interest, while
Figure 4 displays the confusion matrices for the three models.

As expected, the benchmark model is not suitable for prediction, with an overall accuracy of
59%. The limitations of this approach, which motivate further analysis, can be seen by looking
at the sensitivity of the prediction: much of the areas that are affected by high or very high mal-
nutrition status are incorrectly captured by the algorithm. Looking at the confusion matrix, we
can see that there is a lot of error between similar classes, so that administrative areas with se-
vere malnutrition are incorrectly classified as ones with a lower malnutrition level, and the same
holds for lower classes. However, there is also a lot of error between with high and medium mal-
nutrition areas, with misclassification in both directions. This is not satisfactory for two reasons:
first, we do not want to underestimate the burden of wasting, since it should be the first target
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for policymakers; second, we do not want to overestimate the malnutrition status of children
either, since this could lead to a misallocation of resources, which can be particularly scarce.

Figure 4: Confusion matrices: Lasso, Random Forests and eXtreme Gradient Boosting

(a) Lasso (b) Random Forests

(c) XGBoost

These problem are sensibly mitigated when looking at the results obtained with random forests,
as can be seen in panel 4c. Aside from an important gain in overall accuracy, we can see how the
algorithm is able to consistently disentangle the areas with severe malnutrition from others, and
to mitigate the variability of the prediction for the highest categories. The improvement for said
groups can be seen looking at the AUC of the models in Table 1, which is a the broadest indicator
of accuracy of the model: Random Forests improve on the naive benchmark with a ≈ 10 p.p.
increase in the AUC for areas with a high level malnutrition and a ≈ 20 p.p. increase in the AUC
for areas with severe malnutrition. Finally, we turn to our main estimation strategy, based on
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the eXtreme Gradient Boosting algorithm. Overall, the algorithm provides the most satisfying
results in terms of accuracy, with an improvement of 3.5 p.p. over Random Forests. The ratio-
nale for this further implementation can be seen looking at the sensitivity and specificity of the
model. If the sensitivity is almost unchanged, or slightly lower for areas with a high or very high
level of wasting, there is a sensible improvement in the identification of medium-low levels of
malnutrition, with a considerable increase in the sensitivity for these two categories. We argue
that this is a non-negligible feature for a model which aims at predicting severe levels of wast-
ing, correctly identifying people at risk and finally targeting mitigation policies. Furthermore,
the XGBoost algorithm is fully calibrated by means of cross-validation techniques: indeed, each
parameter of the model is selected through extensive cross-validation exercises, which improves
the stability and out-of-sample performance of the algorithm.

Overall, the main prediction strategy, based on a fully cross-validated XGBoost algorithm, has
proven to effectively predict the burden level for wasting in children across two dimensions: (i)
identifying areas with high and very high malnutrition levels, which should be the main target
for policymakers and (ii) identifying areas with an overall better health environment, which can
allow organizations to consistently better allocate resources, by prioritizing areas with a higher
level of malnutrition.

4.2 Including Food Prices and Climate Information

We test whether the inclusion of local producer and consumer food prices, as well of the SPEI
climatic variables, helps enhancing the prediction. Figure 5 shows the two Receiving Operating
Characteristic (ROC) obtained from the LASSO classificaiton for the three categories excluding
(Panel 5a) and including (Panel 5b) these variables. We find a substantial improvement in the
AUC. For the very high wasting category, the AUC moves from 0.66 to 0.70, whereas for the
high category the AUC increases by 0.03 including the variables.

Figure 5: Receiving Operating Characteristic (ROC) with and without local food prices and SPEI
variables - LASSO

(a) Without Food Prices and SPEI (b) With Food Prices and SPEI

We find similar results with the Random Forest (Figure 6). For each category the AUC is always
greater when we include food prices and SPEI.

11



Figure 6: Receiving Operating Characteristic (ROC) with and without local food prices and SPEI
variables - Random Forest

(a) Without Food Prices and SPEI (b) With Food Prices and SPEI

Overall, we advocate that the inclusion of these additional variables is key for the increasing
predictive power of the model. However, to have further assurance on this side, we need to
determine the relevance importance of each variable in our data set.

4.3 Relative Importance

The proposed estimation strategy allows us to disentangle the relative importance of the pre-
dictors in the Random Forest and eXtreme Gradient Boosting algorithm, which greatly informs
about the relevance of each variable in predicting malnutrition.

Figure 7: Relative importance of coefficients, Random Forest and XGBoost

(a) Random Forest (b) XGBoost

Figure 7 shows the relative importance of each predictor in the Random Forest and XGBoost
algorithms. The variables are presented in order of decreasing importance. First, we can no-
tice how both the producer price index z PPI and the SPEI are indeed important predictors of
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wasting, while a less important role is played by consumer prices, z CPI. The findings highlight
the importance of these variable in predicting child malnutrition, and therefore motivate their
inclusion in the dataset. These findings are coherent with the literature on the effects of climate
shocks on local populations and with the literature on the role of global price shocks on local
populations, especially those with a high share of people exposure to risk (Bloem et al., 2009;
Vellakkal et al., 2015). Furthermore, we confirm the importance of well-established predictors
in the health literature, such as diahrrea and health conditions (Katona and Katona-Apte, 2008),
along with other socio-political indicators which capture the instability of local areas (Kalu and
Etim, 2018).

5 Discussion and conclusion

We propose an effective multiclass classification models based on machine-learning tools to pre-
dict the presence of severe malnutrition in Sub-Saharan Africa. Using appropriate features’ se-
lection procedure, we are able to identify the key predictors of severe child malnutrition. The
best model, both in terms of accuracy and true-positive rates, is based on an eXtreme Gradient
Boosting procedure applied on a relevant subset of predictors, providing an accuracy of 84%
along with information on the contribution of each of the variables of interest. Crucially, we
show that the inclusion of local food prices and climate indexes significantly increases the accu-
racy of our model.

We argue that the inclusion of these variables provides a significant improvement in terms of
predicting and hence preventing malnutrition. Specifically, we identify some main advantages
of our methodology. First, given that the price index proposed by McGuirk and Burke (2020)
uses global price trends of agricultural goods, forecasts of these trends are easily accessible and
can be therefore used for policy. Under the fair assumption of a slowly-changing agricultural
structure, global price trends can be effectively used to infer areas particularly exposed to chil-
dren malnutrition. Secondly, we have shown that medium-run trends of climate risk also can
inform in advance about areas which could be exposed to malnutrition problem. Lastly, given
the often uncertain nature of the political and institutional environment in Africa, we argue that
the ability to rely on gridded, geographically coded and easily measurable variables for predic-
tion constitutes an important improvement.

Our work presents important limitations. The main drawback of the model is related to data
quality and availability. The lack of local variability in several predictors proved to be an impor-
tant obstacle in the prediction of children malnutrition, and it required us to work with imputed
data, which rely on more aggregate information. The imputation process may introduce mea-
surement error and bias our estimates since lead to the loss of fundamental local dynamics.
Furthermore, we employ price indexes which are not updated with the latest price trends. They
only serve as a proxy of current price trends. An immediate extension would be to build a novel
index based on more recent price series, also controlling for potential changes in the local agri-
cultural shares. Finally, we need to acknowledge the complete lack of causality in the estimation
framework. While the algorithms provided are useful to identify key predictors of children mal-
nutrition and to have an initial indication of where policies needs to be targeted, there is no
clear answer on which policies should be preferred or which channels should be prioritized for
prevention. In this sense, the large recent literature on tackling causality in machine-learning
models (Pearl, 2019; Prosperi et al., 2020) can further improve the analysis by offering guidance
on the causal drivers of malnutrition, which should be prioritized by policymakers.
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Appendix

Table 2: Variables from Lasso selection

variables cat0 cat1 cat2 cat3
1 (Intercept) 2.352 -0.786 -0.127 -1.438
2 Access to health care -0.081 -0.075 0.203 -0.047
3 Aid Dependency -0.123 0.021 0.195 -0.093
4 avg spei48 0.173 -0.670 0.189 0.308
5 Children U5 -0.037 -0.109 -0.046 0.193
6 Conflict Intensity -0.082 0.093 0.014 -0.024
7 country niger -0.069 -0.001 0.034 0.036
8 country senegal 1.631 -0.297 -0.262 -1.072
9 diarrhee 0.003 -0.001 0.006 -0.008

10 Food Insecurity Probability -0.582 -0.498 0.293 0.788
11 Health Conditions -0.083 0.271 -0.022 -0.167
12 Inequality 0.423 0.487 -0.369 -0.541
13 Land Degradation -0.171 0.184 0.042 -0.056
14 malaria fever 0.000 0.003 -0.002 -0.001
15 Physical exposure to flood -0.232 -0.075 0.149 0.158
16 Physical infrastructure -0.133 -0.002 0.020 0.115
17 Political violence 0.009 -0.052 -0.090 0.133
18 Recent Shocks -0.056 -0.058 0.053 0.061
19 spei12 0.829 0.322 -0.564 -0.587
20 Uprooted people -0.053 -0.144 0.061 0.136
21 vita -0.026 0.015 -0.006 0.017
22 z CPI 0.444 -0.351 -0.019 -0.074
23 z PPI -0.000 0.013 0.012 -0.025
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