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Abstract

Climate change is nowadays a key topic of interest in political discussions. It is crucial to
have proper models and perform accurate forecasts of climate-related variables to efficiently
tackle the issues that climate change brings. This paper focuses on the forecast of carbon diox-
ide atmospheric concentration. We propose a state space approach that takes into account the
measurement errors to which climate data is subject to. The model is based on the Global Car-
bon Budget Equation and allows to jointly estimate and forecast all the unobserved compon-
ents driving the observed variables of the Budget Equation and CO2 atmospheric concentra-
tions. We compare our forecast from 2019 to 2100 to Representative Concentration Pathways
(RCP) that correspond to distinct scenarios leading to different temperature increases above
pre-industrial levels. We find that if all variables keep on following current trends, the best
and worst RCP scenarios are less likely to be achieved. We further conduct a simulation study
where we let the level of CO2 emissions drops to its 1959 level for future periods, we find that
our forecasts are tilted toward the best scenario. The contrary happens if we let CO2 emissions
explode. These results stress the fact that there is a serious need for new global climate policies
in order to save our planet.

Keywords: Global Carbon Budget Equation, CO2 Atmospheric Concentration, State Space
Models, Forecasting.
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1 Introduction
Over the last two decades, the Carbon Budget has been a problem of great interest, especially after
the Earth Summit in Rio de Janeiro in 1992, where the member states of the United Nations decided
to stick together and to handle the conflict relating to sustainability and global warming together.
Awareness regarding climate change increased and it became clear that the need for understanding
the relationship between carbon dioxide (hereafter CO2) emissions, land and ocean sinks and CO2
atmospheric growth is critical. The problems are again emphasized at the COP21 in Paris. The
main result from these climate discussions is that we globally need to limit the temperature rise
to a maximum of 2 degrees above pre-industrial level. This was formally captured in the Paris
Agreement. To sufficiently tackle the climate problem, new policies need to be established and
policy makers are interested in what these policies need to include to achieve a specific future goal.
Hence, not only is it essential to understand historical and recent budgets, it is also necessary to
perform reliable forecasts to compare potential future scenarios of various environmental variables.

It is necessary to have a proper understanding of the carbon cycle and to have accurate meas-
urements of CO2 emissions and their redistribution among the atmosphere, ocean, and terrestrial
biospheres. It can directly be concluded from the carbon cycle that the amount of emitted CO2
that is not absorbed by the land or the ocean sinks must end up in the atmosphere. Hence, the
equilibrium condition is a such,

Gt = EFF
t + ELU

t − SLDt − SOCt ,

where Gt is the growth in atmospheric CO2 concentration, EFF
t are CO2 emissions from fossil

fuels combustion and industrial processes, ELU
t are the CO2 emissions from land-use change (e.g.

deforestation), SLDt is how much of these emissions are absorbed by the terrestrial biosphere and
SOCt is the amount absorbed by oceans (Le Quéré et al., 2018). However, each variable is measured
from different environmental models and the construction of each variable is hence subject to
measurement errors. In practice, this leads to a significant discrepancy between the right and left
hand sides of the identity, implying a disequilibrium in the carbon cycle. The Global Carbon
Project aims at quantifying this discrepancy (denoted by εt) by means of the so called Global
Carbon Budget Equation,

Gt = EFF
t + ELU

t − SLDt − SOCt + εt. (1)

It is however impossible to disentangle whether a positive imbalance for instance is induced by an
overestimation of emissions, an underestimation of the sinks absorption or an overestimation of
the growth of atmospheric CO2 concentration.

The rise of interdisciplinary techniques and mostly the use of econometric methods have been
of interest in the recent years as similar problems have been observed in economic applications.
The aim of this paper is to model and forecast the concentration of CO2 in the atmosphere by
means of an econometric approach. We propose a state space model for this purpose. It allows
to jointly estimate and forecast the state variables of all the observable variables that appear in
the Carbon Budget Equation and more. We indeed propose a model specification which allows to
estimate and forecast directly also the unobserved components of CO2 concentration, although it
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does not appear directly in the Carbon Budget Equation. Moreover, the model has the flexibility
of imposing the restrictions defined by the Carbon Budget Equation.

The paper is organized as follows, Section 2 highlights the motivations and the necessity of an
econometric model for the Carbon Budget. Then, it describes the data set used in this research.
Section 4 presents the construction of the state-space model based on the Global Carbon Budget.
Estimation of the model between 1959 and 2017 as well as forecasts up to 2100 are performed
in Section 5. Section 6 discusses the limitations and the possible further research that this paper
sheds light on, before concluding in Section 7.

2 The Global Carbon Budget
The Global Carbon Budget states that all CO2 emissions must either end up in the Earth’s sinks
or in the atmosphere, while accounting for potential measurement errors. The traditional approach
to model the growth of atmospheric CO2 concentration has been related to the field of physics
and climatology (Le Quéré et al., 2018). Each variable in the Budget Equation (1) is measured
with distinct – usually – climatology models and the imbalance is then simply constructed as the
discrepancy between the measured atmospheric CO2 concentration growth and the one implied by
the difference between emissions and Earth absorption.

Measurements errors associated with CO2 measurements and emission estimates still limit our
confidence in calculating net carbon uptake from the atmosphere by the land and ocean (Ballantyne
et al., 2015). As we enter into an era in which scientists are expected to provide an increasingly
more detailed assessment of carbon concentrations in the atmosphere at increasingly higher spatial
and temporal resolutions (Canadell et al., 2011), it is critical that we develop a framework less
influenced by these measurement errors. Therefore, instead of solely relying on the budget equa-
tion and estimating each series separately to approximate the imbalance, the equation now builds
the backbone of the statistical models used to predict the concentration level of CO2. Several ap-
proaches have been undertaken recently in the field to model the CO2 concentration atmospheric
growth. Strassmann and Joos (2018) suggest a simple climate model, known as Bern Simple-
Climate model (BernSCM), in order to capture the carbon cycle appropriately and measure the
long-term effect of humans in the Earth’s Budget Balance but they do not tackle the issue of meas-
urement errors. The model links a climate component with an energy-economy model to simulate
the emissions and corresponding consequences for the climate. Bennedsen et al. (nd) on the other
hand recognize the problem of measurement errors that occurs with estimating the carbon con-
centration by modelling the airborne fraction and sink rate of CO2 released by human force in a
state space model. Such models are based on the assumption that the variable of interest is mis-
measured and that it is therefore unobserved. The authors present several ways to measure the
impact of human behavior in the Earth’s energy budget by using the budget equation as a part of
the model construction.

Another concern with respect to modelling the global carbon cycle is the potential feedback
effect between CO2 atmospheric concentration and climate change. Indeed, we expect an increase
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in CO2 concentration to lead to an increase in temperature, which may then lead to a reduction
in land and ocean absorption (more arid soils or more water evaporation for instance). In the lit-
erature, this topic is widely discussed among scientists. However, no agreement has been found
about the existence or the magnitude of such feedback effect. Among others, Friedlingstein (2015)
compares eleven coupled climate-carbon models and while they find significant feedback effects,
no consensus is found regarding the magnitude of such feedback or even to what it is attributed.
Strassmann and Joos (2018) find that the feedback range includes zero and, hence, no statistical
evidence is provided that makes it necessary to include it. Gloor et al. (2010) also point out that
no statistically significant feedback effect can be found. For the sake of simplicity and from the
lack of consensus regarding this feedback effect, we will assume that it is non-existent and will
therefore omit it in the model construction.

The aim of this paper is to construct an econometric model to forecast the level of CO2 at-
mospheric concentration. To tackle the issue of measurement errors we will employ a state-space
model inspired by Bennedsen et al. (nd).

3 Data
For this research we use a data set provided by http://www.icos-cp.eu/GCP/2018 which contains
yearly time series data from 1959 to 2017, amounting to 59 observations. The data objects are
anthropogenic carbon emissions from fossil fuels and cement production emissions (EFF ) and
from land-use change, mostly deforestation and afforestation (ELU ) , different estimates of how
much of these emissions are absorbed by the terrestrial biosphere (land sink, SLD), and different
estimates of the amount absorbed by the ocean (ocean sink, SOC). By necessity, all emissions not
absorbed by Earth’s carbon sinks must end up in the atmosphere, and so the final object of interest
is the growth in atmospheric concentrations (G). All observables are measured in billion tonnes
of carbon per year (GtC/yr). For this research we will consider the combined variables emission
(EFF + ELU ) and sink (SLD + SOC ). The reasoning behind this will be further elaborated in the
next section. The plots of atmospheric growth, emission and sink in levels and in first differences
are given in the Appendix. Furthermore a summary statistics table for these variables is given in
the appendix.

Next, we continue the analysis by formally testing for unit roots in the series. In particular,
we want to identify the order of integration of our series. In this context, one should address the
concept of the Pantula Principle, which is especially relevant for the Augmented Dickey-Fuller
(ADF) test. One should difference the series as many times as it deems appropriate for making
the series stationary, which we specify to be d = 2. We test for a unit root in the differenced
series. If the null of a unit root is rejected, we decrease d by one and repeat the unit root test. The
procedure is stopped when the test cannot be rejected anymore. The order of integration is then
assumed to be I(d+ 1). This procedure ensures that the differenced lags included in the ADF test
are stationary. The following table depicts the results from the ADF test, where the null hypothesis
is non-stationarity and the alternative hypothesis is stationarity. From this we can conclude that
the emission and sink series are integrated of order one and that atmospheric growth is stationary
in levels. However, the last result is not what we expect from the plotted time series. This can be
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due to the small sample size, since we only have 59 observations. Therefore, we rely on what the
graphs tell us and conclude that all series are integrated of order one.

Atmospheric Growth Emission Sink
2nd difference 0.01 0.01 0.01
1st difference 0.01 0.02831 0.01

Levels 0.03667 0.5422 0.06508

Table 1: p-values for the Augmented Dickey-Fuller test for stationarity

Since the CO2 atmospheric concentration is the variable of interest, we construct this variable
in the following way,

Ct = C1959 +
t∑

τ=1

Gτ , (2)

where Ct is measured in GtC/yr.

The order of integration of the variables will therefore be used in the construction of the model
in the upcoming section.

4 A state space model approach
State space models allow to model variables of interest that are subject to measurement errors,
which is the case for the Global Carbon Budget Equation, as the budget imbalance is generally
different from zero. A state space model for the airbone fraction and the sink rate has already
been proposed in Bennedsen et al. (nd). They model the trends of the above-mentioned variables
in two different state space models. We build on their approach by proposing a single state space
model that exploits the restrictions of the Global Carbon Budget Equation and jointly estimates
the unobserved components of all the variables that appear in the equation. Moreover, our model
allows to jointly estimate the state variables of both the atmospheric concentration of CO2 and its
first difference. State space models take the following form:

yt = Zµt + εt (3)

µt = Tµt−1 +Mηt (4)

Equation (3) represents the observation equation, that is, we observe variable y but the variable
of interest is its state, µ, which is not observed. The error term in the observation equation hence
represents the measurement error in the observed variable. The transition equation (4), represents
the transition process of the state variable of interest, which in this example depends on its own lag.

The available sample size and the order of integration of each series limit estimations when the
number of parameters becomes too large. Since this paper focuses on the effects of emission paths
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on the CO2 atmospheric concentration and does not make the distinction between the two sources
of emission and the two sources of absorption, we make the following reduction of the model.

Gt = Et − St + εt,

where Et = EFF
t + ELU

t and St = SLDt + SOCt and Gt = Ct − Ct−1. Nonetheless, it is possible
to extend our state space representation in order to model all of these four variables separately.
As mentioned, the four variables of interest are subject to measurement errors. Furthermore, the
CO2 atmospheric concentration growth (Gt) can on the one hand be measured from environmental
models, but can also be approximated by the difference between emissions and absorption (Et−St).
That is, with different measurement errors, Gt and (Et−St) should have the same state variable in
the observation equations. Following the structure of Equation (3) and the assumptions made, our
set of observation equations of interest is as follows,

Ct
Gt

Et − St
Et
St

 =


1 0 0
0 1 −1
0 1 −1
0 1 0
0 0 1


µCtµEt
µSt

+ εt, (5)

where εt is a vector stacking the five error terms of the observation equations, they are assumed
independently normally distributed with mean zero and distinct variance: εt ∼ N(0, H), H =
diag(σ2

C,ε, σ
2
G,ε, σ

2
E−S,ε, σ

2
E,ε, σ

2
S,ε). The CO2 atmospheric concentration variable is I(2) and its first

difference is equal to Gt, which is I(1) and depends on the state of Et and St which are themselves
I(1). Hence, the state variables are assumed to be integrated of the same order as their correspond-
ing observed variables and the transition equations of the three states of interest are as follows,µCtµEt

µSt

 =

1 1 −1
0 1 0
0 0 1

µCt−1µEt−1
µSt−1

+ ηt. (6)

The three error terms ηt are also assumed independently normally distributed with mean zero and
distinct variance: ηt ∼ N(0, Q), Q = diag(σ2

C,η, σ
2
E,η, σ

2
S,η). M is equal to the identity matrix.

The hyperparameters of the model described above, i.e., all the variances of the error terms, are
estimate by maximizing the following diffuse log-likelihood:

`d = −
Tn

2
log(2π)− 1

2

T∑
t=d+1

log (|Ft|)−
1

2
v′tF

−1
t vt,

where d is the number of non-stationary variables, and vt and Ft are, respectively, the prediction
errors and their covariance matrix. The latter are estimated, together with the state variables and
their covariance matrices, via the Kalman filter recursions

vt = yt − Zat
Ft = ZPtZ

′ +H

Kt = TPtZ
′F−1t

at|t = at + PtZ
′F−1t vt

Pt|t = Pt − PtZ ′F−1t ZPt

at+1 = Tat +Ktvt

Pt+1 = TPt (T −KtZ)
′ +Q,
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t = 1, . . . , T . We use a diffuse initialization for all the state variables, as all of them are
non-stationary (Durbin and Koopman, 2012).

5 Results

5.1 Estimation
We estimate our proposed state space model for the sample period starting in 1959 and ending in
2017. Figures 1 and 2 report, respectively, the filtered estimates of the state variables µCt for Ct
and µEt − µSt of Gt, together with their 95% confidence intervals, which are constructed using the
estimates for Pt|t from the Kalman filter recursions. The figures show that the adequacy of the
restriction on the state variable of Gt being equal to the one of Et−St, as the estimated local trend
does not deviate much from the observed series Gt. On the contrary, the occasional deviations of
the estimated trend from Et−St are due to a deterioration of the model when imposing a common
trend (Bennedsen et al., nd). See Figures 13-15 in the Appendix for the filtered estimates of the
remaining state variables of the model, and Table 4 for the maximum likelihood estimates of the
hyperparameters. We do not venture into diagnostic checking as our main interest relies on the
forecast of the state variables, rather than on a correct model specification. For the same reason we
do not use Kalman filtering instead of smoothing.

Figure 1: In-sample estimates of the state variable µCt of Ct in GtC/yr, together with their 95% confidence
intervals.
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Figure 2: In-sample estimates of the state variable µEt − µSt of Gt in GtC/yr, together with their 95%
confidence intervals.

5.2 Forecast
To evaluate the accuracy of our constructed model, we perform in-sample and out-of-sample fore-
casts. In presence of missing observations, the Kalman filter is carried out by imposing Kt = 0
and vt = 0. We based our forecast evaluation on the accordingly forecasted state variables and
build prediction intervals using the forecasted variances of the state variables. Figure 3 depicts the
one-step step ahead forecasts with expanding window. We include both the 50% and 99% confid-
ence intervals. The width of the confidence intervals does not increase as for each one-step ahead
forecast, we update the information that we have at the current time.

Such investigation is however not really representative of the forecast ability of the model for
longer horizon. We then performed 56 (as we used a diffuse initialization for the estimation of
the model and therefore had to exclude as many starting observations as many non-stationary state
variables appear in the model, namely 3) in-sample recursive one-step ahead forecasts where each
forecast point now depends on past forecasted points and not on realised values. Figure 4 de-
picts the recursively obtained 56 points ahead forecast. We again include both the 99% and 50%
confidence intervals. While the confidence intervals significantly diverge as the forecast horizon
increases, the predicted series accurately approximate the observed series, which lies within the
50% confidence interval.

However, models may perform well with in-sample forecasts but poorly with out-of-sample.
Yet, the lack of data points does not allow us to evaluate its performance out-of-sample. We non-
etheless perform 83 recursively obtained one-step ahead forecasts, from 2018 to 2100. Figure 5
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Figure 3: One step-ahead forecasts of µCt of Ct in GtC/yr, together with their 99% and 50% confidence
intervals.

Figure 4: 56 step-ahead forecasts of µCt of Ct in GtC/yr, together with their 99% and 50% confidence
intervals, using the observed sample period.

shows the CO2 atmospheric concentration forecast with both the 99% and 50% confidence inter-
vals. Due to the significantly far horizon and the recursively dependent forecasts, the confidence
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intervals significantly widen, leading to a possible CO2 atmospheric concentration between 500
and 2000 GtC/yr in 2100 at the 99% confidence interval.

Figure 5: Out of sample forecasts of µCt of Ct in GtC/yr, together with their 99% and 50% confidence
intervals.

Scientists have already performed several in-depth analyses of how the CO2 concentration
would evolve when different restrictions are imposed over the same forcast horizon (until 2100).
This set of scenario forecasts of the atmospheric greenhouse gas concentrations are called Rep-
resentative Concentration Pathways (RCPs) and are compared to our forecast in the upcoming
section.

5.3 Forecasted scenarios
For each category of emissions (for instance, agricultural emissions and aviation emissions), an
RCP contains a set of starting values and the estimated emissions up to the year 2100, based on as-
sumptions about economic activity, energy sources, population growth and other socio-economic
factors (Moss et al., 2010). We consider four of these pathways: RCP8.5, RCP6, RCP4.5 and
RCP2.6. Table 2 specifies the details of each path. Radioactive forcing measures the influence of
a factor in the change of the Earth’s energy balance (in watt per square meters). The goal of work-
ing with these different scenarios is not to predict the future but to better understand uncertainties
and alternative futures. In this way, it is easy to derive how robust different political decisions or
options may be under a range of possible futures. In order to explore what the RCP concentra-
tion scenarios imply for our forecasted emission paths, we use the RCP data set obtained from
http://www.iiasa.ac.at/web-apps/tnt/RcpDb/. We have 82 observations, starting from 2019 up to
2100. Note here that the values provided in this data set are slightly lower than the ones indicated
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for the CO2 concentration in table 2. We plot the RCP CO2 concentration paths for the four scen-
arios together with our forecasted series of CO2 concentration.

Radiative CO2 Temperature
Name Forcing Concentration (in ppm) Anomaly Pathway

RCP8.5 8.5 Wm2 in 2100 1370 4.9 Rising
RCP6 6 Wm2 post 2100 850 3 Stabilization without overshoot

RCP4.5 4.5 Wm2 post 2100 650 2.4 Stabilization without overshoot
RCP2.6 3 Wm2 before 2100, 490 1.5 Peak and decline

declining to 6Wm2 2100

Table 2: RCP-Scenarios Explanation

Figure 6 compares our forecast with the 4 RCP scenario paths at the 99% confidence inter-
val. At such confidence interval, all paths are within the possible range. Our forecast lies within
RCP4.5 and RCP6, which corresponds to a maximum temperature increase of around 2.75 degrees
above pre-industrial level (calibrated temperature from Table 2). Yet, since all possible scenarios
are within the confidence range, temperature could potentially increase to a maximum of 4.9 de-
grees above pre-industrial level or to only a maximum of 1.5 degrees as depicted from the two
extreme scenarios.

Figure 6: Out of sample forecasts of µCt of Ct in ppmv, together with their 99% confidence intervals,
compared to the RCP forecasted scenarios.

Reducing the confidence interval to 75% then renders unlikely the worst case scenario (RCP8.5)
as shown in Figure 17 in the Appendix, and further decreasing the confidence interval to 50% leads
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to the additional exclusion of the best case scenario (RCP2.6) as shown in Figure 7. Those results
are given that the future will follow the current trend of the growth of CO2 concentrations. Hence,
we can be 50% certain to find ourselves in the medium cases if no changes are imposed on the
emission pathway. This shows that in order to reach the goals of the COP21 in Paris, the need for
new climate policies becomes urgent.

Figure 7: Out of sample forecasts of µCt of Ct in ppmv, together with their 50% confidence intervals,
compared to the RCP forecasted scenarios.

In order to evaluate the effects of potential future paths of CO2 emissions on our forecast
and its implication regarding the temperature rise in the future, we simulated different scenarios
(sensitivity analysis). First, we set Et equal to its value in 1959, which is also the lowest value.
Figure 8 shows how our forecast for the state variable of CO2 concentration gets closer to the
best case scenario defined by RCP2.6. The two worst case scenarios are now excluded from the
50% prediction interval. Figure 18 shows that the worst case scenario is still excluded with a 75%
confidence interval and Figure 19 shows that all scenarios are still possible with a 99% confidence
interval but the latter is tilted towards the best scenario. We therefore conclude that if the overall
emission level of CO2 would be immediately decreased to its level of 1959, then the RCP2.6
scenario would likely be reached. On the contrary, if we let CO2 emissions explode and set its value
to 20 GtC/yr in the entire out-of-sample period, then we can see from Figure 9 how the estimation
for CO2 concentration gets closer to the worst case RCP scenario and the 50% confidence intervals
tend to exclude the three best ones. Figure 20 shows that in this case the 75% confidence interval
now excludes the best scenario and Figure 21 shows again that all scenario are included within the
99% confidence interval, but the interval is tilted towards the worst scenario. This simulation study
shows that the forecast of CO2 concentration based on changes in CO2 emissions is in line with
our expectations and suggest that our model is indeed appropriate for this purpose, based on the
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Carbon Budget Equation.

Figure 8: Out of sample forecasts of µCt of Ct in ppmv, together with their 50% confidence intervals,
compared to the RCP forecasted scenarios, assuming that Et is equal to its value in 1959 in the out-of
sample period.

6 Discussion
A key motivation to undertake this study has been to model CO2 atmospheric concentration using
an econometric approach. The basis of our model is the Global Carbon Budget Equation and by us-
ing a state-space approach we intend to tackle the measurement errors that climate data are subject
to. Following the critiques of Friedlingstein (2015) and Bennedsen et al. (nd), we do recognize that
a drawback of the constructed model is that it does not incorporate the carbon-climate feedback.
Since the discussion of these effects are still heated, we do realize that it is worth wile to expand
the model and include these effects. Therefore, we suggest this for further research, following the
idea of coupled carbon-climate models.

Moreover, due to having only yearly data at hand, the sample size is relatively small (59 data
points). Hence, drawing reliable conclusions is very hard and limited, e.g. tests like the ADF-test
may not be valid. We also acknowledge this problem in the forecasts. Predicting more than 80
out-of-sample forecasts with a model that is estimated using less than 60 observations leads to
substantial uncertainty, especially the further in the future the forecasts are.

A third limitation is the number of variables used in the model. We decided to merge all emis-
sions and sinks to reduce the dimensionality. In this way, we cannot distinguish the emissions and
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Figure 9: Out of sample forecasts of µCt of Ct in ppmv, together with their 50% confidence intervals,
compared to the RCP forecasted scenarios, assuming that Et is equal to 20 GtC/yr in the out-of sample
period.

sinks and therefore cannot observe the individual effects and cannot draw individual conclusions.
Additionally, we limited our data set to those 5 variables while potentially other external factors
could influence CO2 concentration, such as the direct, or indirect effects of other greenhouse gas
emissions for instance.

Another limitation arises in the sensitivity analysis, where we set the value of emissions equal
to the value that it had in 1959 (or to a high fixed value) and then keep it constant in the model. This
is done in order to then evaluate the path of the carbon concentration after a policy intervention for
example. However, this is not realistic due to two reasons. First of all, it is assumed that the value
of emissions will stay constant over time. This is highly unlikely. Second, the model currently
assumes a big jump in the value of emissions at the beginning to investigate the different scenarios.
An extension of this simulation study would be to let the values gradually increase/decrease at a
specific rate over time, hence find a decreasing time series of emissions such that the value of C2100

is equal to the desired value depending on which scenario we are investigating.

To put it in a nutshell, the model constructed in this paper is rather simplified and may lack
dynamics or external factors. However, it tackles the problem of measurement errors, it is based
on the Carbon Budget Equation, and its forecasts in are line with climate specialists scenarios
forecasts. Yet, further research could extend the constructed state space model to incorporate
the carbon-climate feedback effects and to model all of the environmental variables of interest
individually.
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7 Conclusion
Climate change is nowadays a key topic of interest in political discussions. It is crucial to have
proper models and perform accurate forecasts of climate-related variables to efficiently tackle the
issues that climate change brings. This gave rise to multidisciplinary approaches, such as using
econometric methods to model climate series and their dynamics. This paper focuses on the fore-
cast of carbon dioxide atmospheric concentration.

We propose a state space approach that takes into account the measurement errors to which
climate data are subject to. This was motivated by the persistent Global Carbon Budget Equation
imbalance observed in practice over the past years. The model is based on this equation and allows
to jointly estimate and forecast all the unobserved components driving the observed variables of the
Budget Equation and CO2 concentrations. Our analysis provides insights into whether the goals
set during climate summits, such as the maximum of 2 degrees rise abover pre-industrial levels set
by the COP21, are achievable under the current evolution of the emissions and sinks.

We compare our forecast of CO2 concentration from 2018 to 2100 to Representative Concen-
tration Pathways that correspond to distinct scenarios leading to different temperature increases
above pre-industrial levels. We find that if all variables follows the current trend, any scenario
from a maximum increase of 1.5 degrees above pre-industrial level to a maximum increase of 4.9
degrees lies within the 99% confidence interval. Even though the worst case scenario is excluded
in a 50% confidence interval, so is the best case scenario, which corresponds to a maximum in-
crease of 1.5 degrees.

We also performed a sensitivity analyses by imposing future emission paths and investigate
their effects on potential future temperature rise using the same RCPs scenarios. We find that if we
drop CO2 emissions to their lowest level registered in 1959, then our forecasts are tilted towards
the best-case scenarios and we can then say with 50% certainty that the two worst case scenarios
will not happen. Instead, if we let CO2 emissions explode, the worst-case scenarios becomes the
most likely one. Hence, we can recognize here the serious need of new climate policies in order
to reach this goal. The sensitivity analysis also implies that our forecasts of CO2 concentration
based on changes in CO2 emissions are in line with our expectations and suggest that our model is
indeed appropriate for this purpose. Moreover, the paper presented several limitations of the data
set and model encountered.
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Appendices

(a) Emission Level (b) Emission First Difference

Figure 10: Emission

(a) Sink Level (b) Sink First Difference

Figure 11: Sink

(a) Atmospheric Growth Level
(b) Atmospheric Growth First Dif-
ference

Figure 12: Atmospheric Growth
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Atmospheric Growth Emission Sink
Mean 3.258692 7.281585 3.88693

Standard Deviation 1.381219 2.130644 1.41866

Table 3: Summary Statistics

Figure 13: In-sample estimates of the state variable µEt − µSt of Et − St in GtC/yr, together with their 95%
confidence intervals.
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Figure 14: In-sample estimates of the state variable µEt of Et in GtC/yr, together with their 95% confidence
intervals.

Figure 15: In-sample estimates of the state variable µSt of St in GtC/yr, together with their 95% confidence
intervals.
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Parameters in H Estimates Parameters in Q Estimates

σ2C,ε 0.291 σ2C,η 0.403
σ2G,ε 0.661 σ2E,η 0.084
σ2E−S,ε 0.248 σ2S,η 0.505
σ2E,ε 0.072
σ2S,ε 0.17

Table 4: Maximum likelihood estimates of the hyperparameters in the state space model.

Figure 16: Out of sample forecasts of µCt of Ct, together with their 99% and 50% confidence intervals.
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Figure 17: Out of sample forecasts of µCt of Ct in ppmv, together with their 75% confidence intervals,
compared to the RCP forecasted scenarios.

Figure 18: Out of sample forecasts of µCt of Ct in ppmv, together with their 75% confidence intervals,
compared to the RCP forecasted scenarios, assuming that Et is equal to its value in 1959 in the out-of
sample period.
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Figure 19: Out of sample forecasts of µCt of Ct in ppmv, together with their 99% confidence intervals,
compared to the RCP forecasted scenarios, assuming that Et is equal to its value in 1959 in the out-of
sample period.

Figure 20: Out of sample forecasts of µCt of Ct in ppmv, together with their 75% confidence intervals,
compared to the RCP forecasted scenarios, assuming that Et is equal to 20 GtC/yr in the out-of sample
period.

22



Figure 21: Out of sample forecasts of µCt of Ct in ppmv, together with their 99% confidence intervals,
compared to the RCP forecasted scenarios, assuming that Et is equal to 20 GtC/yr in the out-of sample
period.
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