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Abstract

In this paper, we model and forecast carbon dioxide emissions for eight global
regions: North, South and Central America, Europe, Africa, Asia, Oceania,
and the Middle East. Our model is a region-level vector-error-correction
model. We then assign carbon dioxide reduction paths to the different re-
gions that would allow future paths of global hemispheric carbon dioxide
concentration to be aligned with the four Representative Concentration Path-
ways (RCPs) outlined by the Intergovernmental Panel on Climate Change
(IPCC). In the second part of the paper, we shift our focus to the interaction
between economy and climate. In order to do so, we focus on the United
States of America (US), and simulate economic activity in the US under
different scenarios of carbon dioxide emission reduction. Our model suggests
an increase of real GDP by 7.5% and an increase of industrial production by
3% towards 2100 under RCP2.6. In contrary, our model predict real GDP to
increase by 45% and industrial production to increase by 43% towards 2100
under RCP8.5.
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I. Introduction

Much of the focus in both the academic and political debates about climate change

has evolved around greenhouse gases like methan or carbon dioxide. Greenhouse

gases are a class of chemical objects that are associated with the greenhouse

effect of climate change: anthropogenically emissions of such gases increase their

concentration level in the atmosphere and disrupt the earth’s energy balance by

reflecting some of the energy back to the earth’s surface that otherwise would be

emitted into space. Among greenhouse gases, carbon dioxide (CO2) is notoriously

famous because it is particularly reflective. The reason is that carbon dioxide’s

eigenmodes - the frequency at which carbon dioxide molecules start to resonate,

thus to take up and send back energy - is approximately the same as the frequency

with which the earth surface reflects energy back to the atmosphere. With

increasing levels of CO2 concentration, more energy will be reflected back to the

earth surface, and vice versa, leading to a feedback mechanism: climate change.

In the first part of the paper, we propose to model the carbon emissions from

eight different regions through a Vector Error-Correction Model (VECM). First,

we estimate the model using emission time series from the eight world regions.

Equipped with the model coefficients, we recursively forecast regional emissions

one-year-ahead from 2018 to 2100. We then study the implications of the four

RCP scenarios and compute by how much each region should reduce its CO2

emission to jointly reach the four global levels of carbon dioxide concentration of

the four RCP scenarios. We then propose a distribution scheme for the required

emission reductions across regions, in which each country should reduce its CO2

emission based on its fraction of forecasted emissions.

In the second part of the paper, we shift our focus to the interaction between

economy and climate. To do so, we focus on one individual country, the United

States of America (US), and forecast the response of economic activity in the US

under the four scenarios. We explore how US-macroeconomic variables, Gross

Domestic Product (GDP) and Industry Production (IP), would evolve under carbon

dioxide concentration pathways that correspond to the four RCP scenarios. Our

model suggests an increase of real GDP by 7.5% and an increase of industrial

production by 3 % towards 2100 under RCP2.6. In contrary, our model predict real
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GDP to increase by 45% and industrial production to increase by 43% towards

2100 under RCP8.5.

II. Data and Descriptives

A. Sample Selection and Data Aggregation

The included data-series used in the empirical part of this paper are obtained from

several sources. The Geographical levels of fuel-based carbon dioxide emission are

based on the United Nations Framework Convention on Climate Change (short

UNFCCC) (June 2017) and the Carbon Dioxide Information Analysis Center

(CDIAC). We aggregate the carbon dioxide emission data for eight geographical

regions: North, Central and South America, Europe, Asia, Oceania, the Middle

East and Africa.1

We use global hemispheric carbon dioxide concentration forecasts from our solu-

tion of the first part of the first paper of the Econometric Game 2019 that built on

four time series of carbon dioxide flow variables: the carbon dioxide emission from

fossil fuels, EFF , the carbon dioxide emission from changes in land-use, ELUC,

the carbon dioxide sink rate of the ocean, SOCN , and the land sink rate SLND . All

time series cover the time period 1959 to 2017.

In the second part of this paper, we consider the relationship between carbon

dioxide emission and economic activity in the US. Based on this, we will examine

how the required emission reduction that lead to the RCP CO2 concentration

scenarios affect the economic activity in the US based on the real GDP in 2012

levels and industrial production with base level 2017.

B. Properties of the Geographical Carbon Dioxide Emission Time Series

Figure 1 shows the time series of fuel-based carbon dioxide emission and their

first differences for the eight geographic regions from 1959 to 2017. Asia, Eu-

rope and North America show the highest emissions of carbon dioxide to the

atmosphere. Starting in the late 1990s, the Asian countries overtook Europe

1A list of which countries are part of each region can be found on:
https://cdiac.ess-dive.lbl.gov/ftp/ndp030/regional_definitions.txt.
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and North America as the world’s most carbon dioxide emitting region - a trend

that had started in the late 1960s and is probably related to the fast pace of

industrialization particularly in China that set in during the late 1970s. This

can also be seen by the large increase in the first difference of the series, plotted

in the lower part of the figure. The other geographic regions still play a minor

role in global carbon dioxide production. Whereas Europe’s and North America’s

absolute CO2 emission has been slightly decreasing since the early 2000s, all

other geographic regions seem to have increased their carbon dioxide emission

over the last fifty years.

Figure 1: Time Series and First Differences of Carbon Dioxide Emission by different Regions.

For each of the eight considered carbon series, we test for unit roots using the

Augmented Dickey-Fuller (ADF) test (for more details on the test see Fuller

(2009)). The ADF-test tests the null hypothesis that there is a unit root in

the process against the alternative that the process is stationary. It relies on

estimating the following regression equation

∆yt =α+βt+γyt−1 +δ1∆yt−1 +·· ·+δp yt−p +εt, (1)

and testing for a unit root is equivalent to testing γ = 0. We consider various

versions of the test based on whether the model includes a constant (α 6= 0) and/or

trend (β 6= 0) and provide the summary statistic of the tests in the Appendix. A
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robust finding across all specifications (excluding a constant and a trend and

different amount of lags) is that we cannot reject the null hypothesis of a unit root

on any conventional significance level. As a further robustness test, we test for

unit roots using the MacKinnon (1996) test and the Perron (1988) test and obtain

the same conclusion. We conclude therefore that all processes contain a stochastic

trend. In order to test for a common stochastic trend we also use the Johansen

test for cointegration (see Johansen (1988)). By this, we can test for different

numbers of cointegration relationships sequentially using the trace test and the

long run Vector Error Correction Model (VECM) formulation (more details on the

VECM is provided in Section A below). The null hypothesis of the tests is the

presence of r < k cointegration relationships against the alternative that r = k and

so the test is done sequentially for r = 0,1, . . . ,7 (as we have eight time series). We

consider different lag length for robustness. We reject the null of no cointegration

relationship for all lag length between one and four. Depending on the exact

number of lags used in the model, the number of cointegration relationships vary

between between four and six.

III. Econometric Models

Based on the presence of unit roots and cointegration relationships in the con-

sidered time-series, we choose a model that is able to take those time-series

properties into account. We use a VECM which is designed to capture long-run re-

lationships among nonstationary time series. The advantage of VECMs compared

to simpler unconstrained models is that they may provide a better understanding

of the interaction of different series, which, under correct specification, can lead

to improved forecasting performance.

A. Vector Error Correction Model

Let Yt = (Africat,Asiat, . . . , SouthAmericat) be the vector of climate variables. The

classical classical vector autoregressive (VAR) model, which lays the foundation

for the VECM used bewlow, is given by

Θ(L)Yt = δ+εt, t ∈ 1, . . . ,n, (2)
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where Θ(L) is a k×k matrix lag polynomial of degree p

Θ(L)= Ik −Θ1L−·· ·−ΘpLp, (3)

δ is a p×1 vector of intercepts, and εt is a p×1 vector of weakly stationary and

serially uncorrelated white noise error terms. In order to take the cointegration

relationship into account, we extend to a VECM given by

∆Yt =µ+ΠYt−p +Γp−1∆Yt−p+1 +·· ·+Γ1∆Yt−1 +εt, (4)

which is basically a VAR model specified in first-differences, which includes the

long-run relationship of Yt determined by the p× p matrix Π. Further, µ is a p×1

vector of intercepts and Γi is the p× p vector autoregressive parts. Choosing the

model specification amounts to choosing the number of lags p and the number of

cointegration relationships. The latter can be chosen by performing the Johansen

test (testing the rank of Π) sequentially.

Under quadratic loss the optimal forecast of the VECM is the relevant conditional

expectation. The optimal forecast for yT made at time T for time T+h is therefore

simply obtained as a recursive one-step ahead forecasts according to

ŷT+h|T = E
[
ŷT+h | ŷT+h−1|T , ŷT+h−2|T , . . .

]
. (5)

B. VECM specification comparison

In order to select the preferred VECM specification we examine the in-sample

data fit for different lag lengths and various cointegration relationships. We

start with the usual information criteria, which are depicted in Table 1. Whereas

the AIC favors the model with two lags and one cointegration relationship, BIC

prefers the specification with two lags and four cointegration relationships. Next,

we explore the in-sample root mean-squared-error (RMSE) obtained from the

fitted values based on the different VECM specifications and the actual values.

The results are shown in Table 2. They show that the specification with two

lags and one cointegration relationship has the lowest RMSEs, which is also the

favored AIC-based model.
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Table 1: Information criteria

p r AIC BIC

1 1 2056.958 2218.359

1 2 2025.792 2213.753

1 3 1992.925 2203.359

1 4 1974.503 2203.325

1 5 1964.999 2208.122

2 1 2015.381 2305.007

2 2 1962.699 2278.654

2 3 1936.311 2274.545

2 4 1917.719 2274.181

2 5 1906.260 2276.899
This table shows information criteria
for different VECM specifications.

Next, we investigate the out-of-sample performance of the various models under

consideration and whether the superiority of the model with two lags and one

cointegration relationship carries over to reliable out-of-sample forecast accuracy.

We split the data set into an estimation and evaluation sample. The in-sample

data covers the period 1959 through 2000, and the remaining sample is kept to

examine the accuracy of the forecast. Based on the recursive forecasting approach

depicted in Section A we forecast future paths of the variables and compute

the RMSE for each of the series and for each models. The results are provided

in Table 2. The best out-of sample fit is provided by the specification with one

lag and one cointegrating relationship. Hence, in order to avoid issues arising

from overfitting, we will in what follows, continue with the specification based

on the best out-of-sample performance and refrain from the more complicated

specification which showed the best in-sample fit. Henceforth, we will thus refer to

the specification with one lag and one cointegration relationship as the preferred

VECM specification.
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Table 2: In-sample RMSE

p r Africa Asia Cent-Am Europe MidEast N-Am Oceania S-Am AveRMSE

1 1 24.292 129.755 2.779 122.628 18.522 275.859 5.362 21.601 75.100
1 2 25.423 167.249 2.501 135.422 20.057 260.223 5.656 15.193 78.966
1 3 16.367 76.302 2.502 138.278 25.072 240.742 4.465 13.265 64.624
1 4 15.942 80.636 3.199 138.979 19.193 201.931 2.931 16.428 59.905
1 5 13.176 78.967 2.936 143.059 28.956 193.483 2.844 19.066 60.311
2 1 14.359 105.612 2.763 196.457 17.362 184.919 4.575 19.304 68.169
2 2 14.905 88.373 3.442 102.040 17.099 181.886 4.268 17.906 53.740
2 3 14.950 88.434 3.451 97.112 13.469 180.140 4.236 18.129 52.490
2 4 12.936 106.905 2.105 96.713 13.527 187.067 3.453 17.718 55.053
2 5 13.729 102.160 2.048 103.216 16.119 158.448 1.993 19.954 52.208

The table shows the in-sample RMSE of different VECM specifications for the
different global regions.

Table 3: Out-of-sample RMSE

p r Africa Asia Cent-Am Europe MidEast N-Am Oceania S-Am AveRMSE

1 1 8.353 97.895 1.683 68.889 18.972 70.463 2.823 8.532 34.701
1 2 10.286 104.527 2.027 72.393 19.392 70.600 2.798 8.898 36.365
1 3 10.701 89.734 2.201 68.675 19.962 71.410 2.943 8.883 34.314
1 4 11.291 91.572 2.117 68.929 21.051 71.116 2.634 9.801 34.814
1 5 10.888 91.626 2.265 68.999 21.717 71.607 2.599 10.077 34.972
2 1 13.148 87.049 2.937 90.021 20.801 86.652 3.297 9.499 39.175
2 2 12.137 82.041 2.789 84.754 25.200 90.346 2.928 10.475 38.834
2 3 13.024 81.795 2.983 94.566 26.185 101.351 3.398 10.867 41.771
2 4 14.243 82.669 2.746 91.697 27.010 98.880 3.612 10.840 41.462
2 5 14.368 82.834 2.706 85.968 28.352 97.813 3.361 11.355 40.844

The table shows the out-of-sample RMSE of different VECM specifications for
the different global regions.

IV. Results

The following section collects the results of our study. In Section A, we present

the parameter estimates of our preferred VECM. Then, we continue with a richer

discussion of the in- and out-of-sample fit of the preferred VECM specification

in Section B, where we in the latter use the VECM to forecast carbon dioxide

emission paths for the eight geographic regions. Section C discusses how we link

fuel-based carbon dioxide emission to the overall change in hemispheric carbon

dioxide emission. In Section D, we finally conduct policy scenarios for the eight

geographical regions based on the different RCPs.

A. VECM Parameter Estimates

The estimated parameter values of of the preferred VECM specification are de-

picted in Table 4. In general, the CO2 emission of a given region loads significantly

7



on its own lagged emission value and the error correction term (ECT). That is,

after taking the cointegration relationship into account the estimated parameter

value of the cross-lags appear mostly insignificant and the emission of a given

region does not add further explanation power for future emission of a different ge-

ographic regions. However, some significant cross region effects does exist, such as

between (’L.’ denotes the lagged value of a given region) Africa and L.Asia, Europe

and L.Africa, Europe and L.SouthAmerica, MiddleEast and L.Asia, MiddleEast

and L.Europe, Oceania and L.CentralAmerica, Oceania and L.NorthAmerica,

SouthAmerica and L.Asia, SouthAmerica and L.Europe and SouthAmerica and

L.MiddleEast. These relationship might correspond to an effect of trade between

the different region, i.e., if Europe has a high emission from increased production

(an expanding economy), trade with South America might increase, prompting

their emission to increase.

B. Model Fit and Forecasting

To check the performance of our model, we investigate how our fitted series

relate to the observed series of carbon emission for each of the eight regions

considered. The results are illustrated in Figure 2. In general, the model perform

well with only a few and small deviations from the observed series. An exception

is North America where the fitted series seems to be somewhat below the actual

series. Next, we present the out-of-sample forecasting results for each of the eight

regions. Using the specified model, we perform a recursive forecast of both the

yearly emission in million ton carbon and the regional stock in ppm. Note that the

stock is the forecasted ppm which each of the regions are responsible for and does

not relate to the stock of carbon dioxide in a spatial sense. Figure 3 shows the

forecasted flows, and shows that the individual series converge quickly to their

stable long-run values, which is a theoretical feature of the VECM and corresponds

to when the dynamic system of series attain their long-run equilibrium. This

holds also for the the forecasted stocks illustrated in Figure 4. In the long run,

the forecasts converge to a constant increase in carbon for each period, implying a

continuously increasing stock of carbon.
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Table 4: Parameter estimates of the preferred VECM specification

β̂ s.e.(β̂) t-stat(β̂) p-value
Africa:ECT 0.243 0.082 2.957 0.005
Africa:Africa-1 -0.150 0.182 -0.825 0.414
Africa:Asia-1 0.044 0.012 3.718 0.001
Africa:CentralAmerica-1 0.311 0.646 0.482 0.632
Africa:Europe-1 -0.023 0.017 -1.347 0.184
Africa:MiddleEast-1 -0.115 0.077 -1.504 0.139
Africa:NorthAmerica-1 0.009 0.023 0.377 0.708
Africa:Oceania-1 0.228 0.460 0.495 0.623
Africa:SouthAmerica-1 -0.109 0.151 -0.721 0.475
Asia:ECT 0.524 0.765 0.686 0.496
Asia:Africa-1 -1.472 1.694 -0.869 0.389
Asia:Asia-1 0.791 0.110 7.178 0.000
Asia:CentralAmerica-1 4.912 6.012 0.817 0.418
Asia:Europe-1 -0.049 0.157 -0.312 0.757
Asia:MiddleEast-1 0.367 0.714 0.513 0.610
Asia:NorthAmerica-1 -0.180 0.218 -0.827 0.413
Asia:Oceania-1 4.021 4.286 0.938 0.353
Asia:SouthAmerica-1 0.074 1.407 0.053 0.958
CentralAmerica:ECT 0.059 0.020 3.046 0.004
CentralAmerica:Africa-1 -0.049 0.043 -1.144 0.258
CentralAmerica:Asia-1 0.003 0.003 1.086 0.283
CentralAmerica:CentralAmerica-1 -0.308 0.153 -2.008 0.050
CentralAmerica:Europe-1 -0.006 0.004 -1.485 0.144
CentralAmerica:MiddleEast-1 0.024 0.018 1.299 0.200
CentralAmerica:NorthAmerica-1 0.007 0.006 1.288 0.204
CentralAmerica:Oceania-1 -0.097 0.109 -0.885 0.380
CentralAmerica:SouthAmerica-1 -0.032 0.036 -0.890 0.378
Europe:ECT 2.409 0.600 4.017 0.000
Europe:Africa-1 -2.688 1.328 -2.023 0.049
Europe:Asia-1 0.088 0.086 1.020 0.313
Europe:CentralAmerica-1 -3.474 4.714 -0.737 0.465
Europe:Europe-1 0.336 0.123 2.727 0.009
Europe:MiddleEast-1 -0.379 0.560 -0.677 0.502
Europe:NorthAmerica-1 0.025 0.171 0.148 0.883
Europe:Oceania-1 0.287 3.360 0.086 0.932
Europe:SouthAmerica-1 -3.686 1.103 -3.341 0.002
MiddleEast:ECT 0.524 0.164 3.201 0.002
MiddleEast:Africa-1 -0.604 0.362 -1.666 0.102
MiddleEast:Asia-1 0.099 0.024 4.223 0.000
MiddleEast:CentralAmerica-1 -0.208 1.286 -0.162 0.872
MiddleEast:Europe-1 -0.090 0.034 -2.666 0.010
MiddleEast:MiddleEast-1 0.023 0.153 0.151 0.881
MiddleEast:NorthAmerica-1 0.042 0.047 0.894 0.376
MiddleEast:Oceania-1 0.169 0.917 0.184 0.855
MiddleEast:SouthAmerica-1 -0.301 0.301 -1.001 0.322
NorthAmerica:ECT 0.344 0.594 0.580 0.565
NorthAmerica:Africa-1 -0.914 1.316 -0.694 0.491
NorthAmerica:Asia-1 -0.009 0.086 -0.107 0.915
NorthAmerica:CentralAmerica-1 -6.375 4.671 -1.365 0.179
NorthAmerica:Europe-1 0.007 0.122 0.055 0.956
NorthAmerica:MiddleEast-1 0.423 0.555 0.761 0.450
NorthAmerica:NorthAmerica-1 0.394 0.169 2.332 0.024
NorthAmerica:Oceania-1 4.507 3.329 1.354 0.182
NorthAmerica:SouthAmerica-1 -0.880 1.093 -0.805 0.425
Oceania:ECT 0.097 0.019 5.075 0.000
Oceania:Africa-1 -0.025 0.042 -0.604 0.549
Oceania:Asia-1 0.002 0.003 0.672 0.505
Oceania:CentralAmerica-1 -0.313 0.150 -2.092 0.042
Oceania:Europe-1 -0.006 0.004 -1.635 0.109
Oceania:MiddleEast-1 0.022 0.018 1.250 0.217
Oceania:NorthAmerica-1 0.018 0.005 3.419 0.001
Oceania:Oceania-1 0.056 0.107 0.529 0.599
Oceania:SouthAmerica-1 -0.064 0.035 -1.816 0.076
SouthAmerica:ECT 0.170 0.073 2.330 0.024
SouthAmerica:Africa-1 -0.098 0.162 -0.604 0.549
SouthAmerica:Asia-1 0.047 0.011 4.508 0.000
SouthAmerica:CentralAmerica-1 -0.566 0.574 -0.986 0.329
SouthAmerica:Europe-1 -0.040 0.015 -2.681 0.010
SouthAmerica:MiddleEast-1 -0.143 0.068 -2.099 0.041
SouthAmerica:NorthAmerica-1 0.031 0.021 1.488 0.143
SouthAmerica:Oceania-1 0.114 0.409 0.279 0.782
SouthAmerica:SouthAmerica-1 0.072 0.134 0.533 0.596

This tables shows the estimated parameter values for the
preferred VECM specification with one lag and one coin-
tegration relationship together with its standard errors,
t-statistics, and p-value.
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Figure 2: In-Sample Model Fit Flow.

The figure illustrates the in-sample model fit of our preferred VECM of the
hemispheric carbon dioxide flow in the different geographic regions. The actual
data points are coloured in red and the fitted values in blue. The geographical
regions are, reading from left to right and starting from subplot A: Africa, Asia,
Central America, Europe, Middle East, North America, Oceania and South
America.
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Figure 3: Forecasting carbon dioxide emission for different world
Regions

The figure plots recursive forecasts of carbon dioxide emission for different world
regions based on our preferred VECM specification. The geographical regions are,
in clockwise order and starting from subplot A: Africa, Asia, Central America,
Europe, Middle East, North America, Oceania and South America.
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Figure 4: Forecasting stocks of carbon dioxide for different world
Regions

The figure plots recursive forecasts of hemispheric carbon dioxide concentration
for different world regions based on our preferred VEC model specification. The
geographical regions are, reading from left to right and starting from subplot A:
Africa, Asia, Central America, Europe, Middle East, North America, Oceania and
South America.

C. Linking Region-Level Emission to the Global RCP transmission paths

Linking regional-level carbon dioxide emission forecasts to the global RCP carbon

dioxide concentration scenarios is not a trivial undertaking, because the stock of

global hemispheric carbon dioxide is mediated by the global carbon budget, while

the basis of our analysis are regional fuel-based carbon dioxide emissions.

We therefore need to link changes in the atmospheric carbon dioxide level to fuel

based greenhouse gas emissions of every individual geographic regions. We do so

by referring to our global carbon dioxide concentration forecast from case A and

extrapolate from our individual regional-level fuel-based carbon dioxide forecasts

in the following way. Consider the global carbon budget equation:

GAMT
t = ELUC

t +EFF
t −SLND

t −SOCN
t (6)

where EANT
t = ELUC

t +EFF
t is anthropologically released CO2 into the atmosphere,

where ELUC
t are carbon dioxide emissions from changes in land-use and EFF

t fuel-
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based carbon dioxide emissions, GAMT
t is the growth of atmospheric CO2 emission,

SLND
t is the exchange flow of CO2 from atmosphere and hydrosphere (the land

sink) and SOCN
t is the flow of CO2 from atmosphere to biosphere (the ocean sink).

For each geographical region r ∈ R , we now approximate its contribution to global

carbon dioxide mission in year t as:

GAMT
r,t =

EFF
r,t∑

r∈R EFF
r,t

·GAMT
t (7)

where we replace GAMT with the forecasted values from case A, ĜAMT , and EFF
r

with the forecasted values from Section B, ÊFF
r .

D. Policy Analysis

In this part of the paper, we analyse different policies that aim at reducing carbon

dioxide emissions on a global level so that the RCP carbon dioxide concentration

goals can be reached. However, as the data we use for the analysis is emissions,

i.e. flows of carbon, we need to change this into the corresponding stocks for each

region. Using the same fraction as we used in (7), we calculate the stock in ppm

for each region in 1959 by:

ppmr,1959 =
EFF

r,t∑
r∈R EFF

r,t
· ppm1959 (8)

and then calculate the path for each region using the observed values. For out-

of-sample forecast, each of the values in (8) is replaced with its predicted value.

Figure 5 shows the result of this. For each region, we show the forecasted emission

path with no change is made, along with the four different RCPs. Our model

predicts that the emission will be very close to the level corresponding to RCP6

(the blue line).
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Figure 5: Forecasted Carbon Dioxide Emission Scenarios for the
different Regions

The graph plots forecasted scenarios for the different geographic regions. Our
forecast from the first case of the econometric games 2019 is coloured in ... The
geographical regions are, reading from left to right: Africa, Asia, Central America,
Europe, Middle East, North America, Oceania and South America.

We next consider the necessary emission reductions necessary to arrive at the

different goals. To do this, we first calculate the percentage difference between

the forecasted emission level and the one necessary to achieve the different RCP

levels for each region and multiply it with the its forecasted atmospheric carbon

flow:

PDr,t =
ppmr,t − ppmRCP,t

ppmr,t
·GAMT

r,t (9)

The result is plotted in Figure 6. As can be seen from the plot, the yearly emissions

have be increasingly reduced moving towards 2100. The increase happens because

each region is forecasted to increase its emission. For the industrialized regions,

we see that the emissions have to be reduced by a lot in order to comply with

the best or second best RCP. Specifically, we forecast that the Asian region have
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to reduce its reduction by a approximately 1000 Mtc/year in 2100 in order to

comply with the best RCP. The European and North American region are second

in how much should be reduced with a approximately 500 Mtc/year reduction

necessary in 2100. The necessary reduction for the remaining region is more

conservative corresponding to their relatively small part in the global emission

budget. The negative reductions corresponding to RCP6 and RCP8.5 for the

different regions happens because they are forecasted to end below the level of

these RCPs, meaning that emission can actually be increased in order to reach

this level.

However, it is not immediately clear how these necessary reductions to reach the

more ambitious levels are going to affect the economic activity of the regions. In

the following section, we try to answer this by looking at the relationship between

the economy and the carbon emission, focusing on the US.
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Figure 6: Reduction Paths for Different World Regions

The graph plots reduction paths for the eight world regions that would guarantee
to achieve the different global hemispheric carbon trajectories from the RCP’s.
The geographical regions are, reading from left to right: Africa, Asia, Central
America, Europe, Middle East, North America, Oceania and South America.

V. Global Carbon Emission and Economic Activity: The
Case of the US

Up until now, we considered carbon dioxide emission reductions without explicitly

taking the economy into account. In this section, we take a closer look at the

interaction between the climate and the economy. We narrow our focus on the US,

mainly because the US economy is the world’s largest and because it produces a

large share of the yearly global carbon dioxide emission.
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Our strategy is to extend the region-level VECM to capture a connection between

the emissions of a region and broad economic indicators, and in particular, we

focus on Gross Domesti Product (GDP) and Industry Production (IP). That is,

we specify a region-level VECM as before but include times series of GDP and

IP. We refer to the model as the region-level, economy-augmented VECM. Then,

we feed the pathways of US emissions that correspond to the RCP scenarios

into the region-level, economy-augmented VECM and explore what the required

emission reductions imply for the GDP and IP, respectively. That is, based on the

time series of regional emissions in 1959-2017, the times of real GDP and IP in

1959-2017, and the estimated model coefficients, we forecast real GDP and IP

from 2018-2100 based on the four different RCP scenarios.

A. Specification of the Economy-Augmented VECM

To find the optimal specification of the model, we consider a set of combinations of

lag length p ∈ {1,2} and cointegration relationships r ∈ {1,2,3,4,5}. This amounts

to ten different specification, which we compare based on AIC, BIC, in-sample

RMSE, and out-of-sample RMSE.

Table 5: Information criteria of different specifications

p r AIC BIC

1 1 2596.347 2839.470

1 2 2555.307 2833.162

1 3 2523.019 2831.519

1 4 2492.977 2828.037

1 5 2475.804 2833.338

2 1 2524.451 2968.003

2 2 2458.491 2936.474

2 3 2415.898 2924.261

2 4 2384.691 2919.384

2 5 2357.912 2914.883
This table shows the AIC and BIC for ten different model
specifications.

From Table 5, we see that the specification with p = 2 and r = 5 is best in terms of
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AIC, whereas the specification with p = 1 and r = 4 is best according to the BIC.

In Table 6, we report the in-sample RMSE, where the lowest average RMSE is

obtained for p = 2 and r = 5 in line with the AIC.

Table 6: In-Sample RMSE for different specifications

p r Africa Asia Cent-Am Europe Mid-East N-Am Oceania S-Am GDP IP AveRMSE

1 1 29.527 111.041 3.371 164.948 16.093 243.583 4.929 39.616 805.014 14.477 143.260
1 2 30.118 153.697 2.868 149.366 16.664 241.832 4.743 37.237 847.116 14.949 149.859
1 3 27.247 129.112 2.826 189.446 29.570 268.408 3.731 29.179 892.187 17.369 158.907
1 4 26.589 108.391 2.773 138.160 28.940 281.168 3.772 27.050 934.899 18.018 156.976
1 5 26.095 107.567 2.543 138.347 23.816 277.720 3.472 28.272 965.334 18.632 159.180
2 1 25.402 70.283 3.090 143.261 15.040 245.357 5.399 25.747 955.802 13.152 150.253
2 2 23.841 63.574 1.933 109.789 20.815 221.193 5.219 23.864 945.103 12.127 142.746
2 3 14.454 88.017 3.561 70.805 23.352 174.770 1.458 17.065 572.886 9.348 97.572
2 4 15.392 86.925 2.481 65.162 14.278 180.240 1.384 16.442 538.013 9.174 92.949
2 5 14.863 64.770 1.925 63.733 14.499 121.191 1.434 11.221 202.264 2.452 49.835

This table shows the in-sample RMSE for ten different model specifications. The model
that obtains the lowest in-sample RMSE uses a specification of p = 2 and r = 5.

Finally, we re-do the out-of-sample exercise, in which we estimate the model using

data up until 2000 and then recursively compute out-of-sample one-step-ahead

forecasts up until 2017. The RMSE from this exercise is reported in Table 7,

and shows that the lowest average RMSE is obtained for p = 1 and r = 2. This

indicates that the favored models based on the three in-sample criteria AIC, BIC,

and in-sample RMSE might suffer from overfitting. That is, the specification

that obtains the lowest out-of-sample RMSE is simpler than the preferred in-

sample model specification. Consequently, as we mainly care about out-of-sample

forecasting performance, we proceed with specifying a VECM with lag length

p = 1 and 2 cointegration relationships.

Table 7: Out-of-Sample RMSE of the Augmented VECM

p r Africa Asia Cent-Am Europe Mid-East N-Am Oceania S-Am GDP IP AveRMSE

1 1 7.011 92.099 1.812 72.610 17.790 66.305 2.646 10.509 306.133 5.256 58.217
1 2 7.720 80.736 2.107 81.636 19.260 68.768 2.586 10.659 299.948 5.398 57.882
1 3 7.785 82.863 2.041 76.520 20.648 72.247 2.500 10.476 315.501 5.620 59.620
1 4 9.496 83.509 2.294 81.794 20.550 69.934 2.400 10.546 321.951 5.466 60.794
1 5 10.042 82.149 2.431 82.334 20.503 74.004 2.641 11.418 337.001 5.900 62.842
2 1 12.494 70.764 3.119 108.306 26.628 90.247 2.686 11.155 351.815 5.868 68.308
2 2 15.964 62.908 3.532 107.887 25.894 107.812 3.315 11.894 458.820 6.621 80.465
2 3 15.307 57.658 3.549 98.049 32.510 105.539 3.319 12.139 451.081 6.537 78.569
2 4 16.547 56.243 3.396 88.926 28.870 107.480 3.207 13.507 442.705 6.623 76.750
2 5 16.019 58.052 3.354 92.022 29.164 115.537 3.579 14.328 548.905 7.795 88.875

This table shows the out-of-sample RMSE for ten different model specifications. The model
that obtains the lowest out-of-sample RMSE uses a specification of p = 1 and r = 2.
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B. Forecasting Economic Activity in the US under different CO2 emission scenarios

We now turn to forecasting broad economy indicators under different RCP scenar-

ios based on our preferred economy-augmented VECM specification. We estimate

the model coefficients based on the regional emissions time series as well and the

GDP and IP time series for the period 1959-2017. Having estimated the model, we

conduct a counterfactual analysis, in which we explore how the GDP and IP would

evolve under the four RCP scenarios. More specifically, we fix four pathways for

US emissions according to the RCP scenarios. Given each of the scenarios, we

recursively forecast the remaining regional emissions as well as the GDP and IP

for the US. By this, we take the cointegration relationships into account as those

were estimated without fixing the US emission time series. The results from the

counterfactual analysis are shown in Figure 7.

Figure 7: Trajectories of economic indicators under different RCP scenarios

The figure illustrates the implications of required emission reductions for the
GDP (top) and IP (bottom) given the region-level, economy-augmented VECM. In
the RCP2.6 scenario, the model suggests that both GDP and IP increase slightly
in the long run. In the RCP8.5 scenario, the suggests that both GDP and IP
increases more substantially in the long run. The model forecasts coincide with
the RCP6 scenario.

First, we consider the top panel, which shows the actual and forecasted real GDP

in 2012 levels under the different RCP scenarios. In 2100, the forecasted real

GDP ranges from 19,400 billion USD under RCP2.6 to 26,000 billion USD under
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RCP8.5. In 2017, the real GDP in 2012 levels was 18,000 billion USD. Thus, the

forecasts correspond roughly to an increase of 7.5% under RCP2.6 and an increase

of 45% under RCP8.5 in 2100. The benchmark forecast of real GDP, in which we

do not fix the US emissions, coincides with the RCP6 scenario. Turning to IP, we

consider the bottom panel of Figure 7. Under RCP2.6, our model suggests that

IP increases roughly 3% towards 2100, i.e. the IP index is forecasted to increase

from index 100 in 2017 to index 102.8 in 2100. On the contrary, the IP is expected

to increase by roughly 43% towards 2100 under the RCP8.5 scenario.

VI. Conclusion

In the first part of the paper, we propose to model the carbon emissions from

regions by a VECM as this is able to capture long-run equilibrium relationships

among non-stationary time series. First, we estimate the model using emission

time series from the eight world regions. Equipped with the model coefficients,

we forecast recursively regional emissions one-year-ahead from 2018 to 2100.

We then study the implications of the four RCP scenarios and compute by how

much each region should reduce its CO2 emission to jointly reach the four RCP

scenarios. We propose a distribution scheme for the required emission reductions

across regions, in which each country should reduce its CO2 emission based on

its fraction of forecasted emissions. That is, if a global emission reduction is

required of 5 GtC in a given year, say 2050, to comply with RCP2.6 and North

America is responsible for 20% of the total emissions in the same year, then our

model suggests a distribution scheme in which North America should reduce its

emission in 2050 by 1 GtC.

In the second part of the paper, we extend our model to a region-level, economy-

augmented VECM. This extension takes the real GDP in 2012 levels and the

industrial production index with base year 2017 into account. Again, we estimate

the model parameters during the period 1959-2017, in which period we include all

eight emission time series in addition to the two time series of the real GDP and

IP index. Then, we use the required emission paths for North America under the

four different RCP scenarios and feed these trajectories into the estimated model

and forecast the remaining seven regional emissions and economic indicators

from 2018 to 2100. The two most extreme RCP scenarios, namely RCP2.6 and
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RCP8.5, imply very different economic conditions in 2100. Under the RCP2.6

scenario, the real GDP is forecasted to increase by roughly 7.5% from 2017 to

2100, and the IP is forecasted to increase by roughly 3%. In contrast, under the

RCP8.5 scenario, our model predicts an increase in real GDP by 45% towards

2100, and an increase in IP by 43% towards 2100.

However, we suggest to approach our results with great caution. Forecasting

as far into the future as the year 2100 is not a trivial thing to do; economists

regularly fail in predicting the state of the economy only a very few years ahead.

Forecasting carbon dioxide emission broadly shares some key features of the main

difficulties in macroeconomic forecasting.

A first problem of our estimates is the small number of data points. In the climate

science and climate econometric literature, researchers are e.g. struggling to

reconcile how the decrease in global surface temperature between 1996 and 2008

matches the evidence of anthropologically caused climate change (Kaufmann,

Kauppi, Mann, and Stock (2011)). Having longer time series would clearly facili-

tate the detection of long climatic cycles that could otherwise be missclassified as

structural breaks in climate models.

Furthermore, we do not take the endogeneity of carbon dioxide emission and

economic activity into account. Economic activity increases atmospheric green-

house gas concentration, with different effects on global and regional climates.

When facing economic damages from climate change, the economy is expected

to respond by adapting its production structure in the long run. Pretis (2017)

hints at this problem and stresses that the climate econometric literature suffers

from plausibly unreasonable exogeneity assumptions on the interaction between

the climate and the economy. He argues that one strand of the literature takes

the economy as fixed and models climate change as a response to given economic

activity (e.g. Kaufmann et al. (2011) or Estrada, Perron, and Martínez-López

(2013) ), while another stresses human and social responses to climate change

(see Dell, Jones, and Olken (2014), Jones and Olken (2010)). The models and

forecasts in our paper are in the spirit of the first fixed-economy literature, as

we do not properly consider endogenous feedback mechanism between climate

change and human behavior. For instance, our model assumes that the economic
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policy is stable. If political organizations e.g. decided to drastically tax carbon

dioxide emission, economic theory predicts that the economy should substitute

away from carbon dioxide based economic activity.

Last, our forecasts neglect the role of economic innovation. Nordhaus (2010)

argues that neglecting economic innovation will most likely lead to overestimates

of climate change, but admits that the economic profession has little sense of the

magnitude of the bias. In particular in the context of the US, it could very well be

the case that ambitious carbon dioxide reduction programs or high carbon taxes

might foster innovation in carbon-free energy production, with potential positive

spillovers to the entire globe.
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A. Appendix

Table 8: Augmented Dickey Fuller test for unit root

Table 9

lag ADF1 p.value ADF2 p.value ADF3 p.value

0 6.594 0.990 0.942 0.990 -1.978 0.576
1 4.367 0.990 0.827 0.990 -1.953 0.586
2 3.037 0.990 0.574 0.987 -2.048 0.547
3 2.346 0.990 0.382 0.979 -2.082 0.533
0 9.207 0.990 4.258 0.990 -0.432 0.982
1 2.169 0.990 1.106 0.990 -1.463 0.789
2 2.602 0.990 1.380 0.990 -0.837 0.953
3 1.326 0.951 0.423 0.981 -1.525 0.764
0 3.348 0.990 0.093 0.961 -1.706 0.688
1 3.554 0.990 0.032 0.956 -1.358 0.832
2 3.326 0.990 0.095 0.961 -1.191 0.901
3 1.922 0.985 -0.143 0.937 -1.749 0.671
0 0.811 0.872 -2.975 0.046 -2.123 0.516
1 0.272 0.718 -2.324 0.205 -2.045 0.548
2 0.074 0.662 -2.398 0.177 -2.279 0.454
3 -0.020 0.635 -2.291 0.217 -2.267 0.458
0 9.472 0.990 4.384 0.990 0.363 0.990
1 6.955 0.990 4.670 0.990 0.696 0.990
2 4.388 0.990 3.526 0.990 0.570 0.990
3 4.064 0.990 3.610 0.990 0.877 0.990
0 2.138 0.990 -2.778 0.073 -0.406 0.983
1 1.324 0.951 -2.436 0.162 -0.917 0.943
2 1.287 0.948 -2.749 0.077 -0.931 0.941
3 0.556 0.799 -2.443 0.159 -1.540 0.757
0 6.333 0.990 -1.218 0.617 -0.773 0.959
1 3.608 0.990 -1.226 0.614 -0.826 0.954
2 2.518 0.990 -1.362 0.567 -0.891 0.947
3 1.805 0.980 -1.424 0.545 -1.309 0.853
0 5.411 0.990 0.730 0.990 -1.862 0.624
1 3.318 0.990 0.360 0.978 -2.032 0.554
2 1.333 0.952 -0.477 0.877 -2.855 0.227
3 1.982 0.987 0.235 0.972 −2.332 0.433 height

This table shows the result from running the augmented Dickey Fuller test for unit root on all the
region specific time series. The three test are for a model with no trend nor constant, a model with
just a constant and a model with constant and trend. Reading from the top, we the time series
is for region: Africa, Asia, Central America, Europe, Middle East, North America, Oceania and
South America.
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